WEBVTT

NOTE duration:"00:28:20.1290000"

NOTE language:en-us

NOTE Confidence: 0.919523298740387

00:00:00.000 --> 00:00:02.526 Like to introduce our next Speaker,

NOTE Confidence: 0.919523298740387

00:00:02.530 --> 00:00:03.790 Doctor Edward Kaplan.

NOTE Confidence: 0.919523298740387

00:00:03.790 --> 00:00:06.310 Doctor Kaplan is William N Andrea,

NOTE Confidence: 0.919523298740387

 $00{:}00{:}06{.}310 \dashrightarrow 00{:}00{:}08{.}365$ a beach professor of operations

NOTE Confidence: 0.919523298740387

 $00{:}00{:}08.365 \dashrightarrow 00{:}00{:}11.335$ research and as a professor of public

NOTE Confidence: 0.919523298740387

 $00:00:11.335 \rightarrow 00:00:13.843$ health and a professor of engineering.

NOTE Confidence: 0.919523298740387

 $00{:}00{:}13.850 \dashrightarrow 00{:}00{:}16.358$ He's an expert in operations research,

NOTE Confidence: 0.919523298740387

 $00:00:16.360 \rightarrow 00:00:17.190$ mathematical modeling,

NOTE Confidence: 0.919523298740387

 $00:00:17.190 \longrightarrow 00:00:19.265$ and statistics, who studies problems

NOTE Confidence: 0.919523298740387

00:00:19.265 --> 00:00:21.390 in public policy and Management.

NOTE Confidence: 0.919523298740387

 $00:00:21.390 \rightarrow 00:00:25.464$ Doctor Kaplan, thank you for being here.

NOTE Confidence: 0.919523298740387

00:00:25.470 --> 00:00:27.255 Thank you very much and

NOTE Confidence: 0.919523298740387

 $00:00:27.255 \longrightarrow 00:00:28.326$ Good afternoon everyone.

NOTE Confidence: 0.919523298740387

00:00:28.330 - > 00:00:30.724 I recognize I am the last thing

- NOTE Confidence: 0.919523298740387
- 00:00:30.724 --> 00:00:32.630 between you and happy hour,
- NOTE Confidence: 0.919523298740387
- $00:00:32.630 \rightarrow 00:00:35.843$ but nonetheless I hope you will bear with me.
- NOTE Confidence: 0.919523298740387
- $00{:}00{:}35.850 \dashrightarrow 00{:}00{:}38.503$ I am taking a somewhat different Ave
- NOTE Confidence: 0.919523298740387
- $00:00:38.503 \rightarrow 00:00:40.918$ into this entire area of work because
- NOTE Confidence: 0.919523298740387
- $00{:}00{:}40{.}918 \dashrightarrow 00{:}00{:}43{.}729$ I came to this not as a researcher,
- NOTE Confidence: 0.919523298740387
- $00:00:43.730 \longrightarrow 00:00:45.893$ but rather is a member of Yale's
- NOTE Confidence: 0.919523298740387
- 00:00:45.893 --> 00:00:48.020 Public Health Kovid Advisory Committee.
- NOTE Confidence: 0.919523298740387
- 00:00:48.020 --> 00:00:50.309 I think some of you have heard
- NOTE Confidence: 0.919523298740387
- $00:00:50.309 \dashrightarrow 00:00:52.680$ about the work of this committee.
- NOTE Confidence: 0.919523298740387
- $00:00:52.680 \rightarrow 00:00:54.495$ It's been meeting quite intensively
- NOTE Confidence: 0.919523298740387
- $00:00:54.495 \longrightarrow 00:00:55.947$ since the very beginning.
- NOTE Confidence: 0.919523298740387
- 00:00:55.950 --> 00:00:58.764 Of March originally charged by Paul Jenison,
- NOTE Confidence: 0.919523298740387
- 00:00:58.770 --> 00:01:00.790 now chaired by Stephanie Spangler,
- NOTE Confidence: 0.919523298740387
- $00{:}01{:}00{.}790 \dashrightarrow 00{:}01{:}03{.}562$ polls the director of Yale Health and
- NOTE Confidence: 0.919523298740387
- $00:01:03.562 \dashrightarrow 00:01:06.429$ Stephanie is device focus for health fairs.
- NOTE Confidence: 0.919523298740387

 $00:01:06.430 \rightarrow 00:01:08.746$ You recognize many of the people

NOTE Confidence: 0.919523298740387

 $00{:}01{:}08.746 \dashrightarrow 00{:}01{:}10.860$ who are on this panel.

NOTE Confidence: 0.919523298740387

00:01:10.860 --> 00:01:11.260 Basically,

NOTE Confidence: 0.919523298740387

 $00{:}01{:}11{.}260 \dashrightarrow 00{:}01{:}14.060$ we were tasked to advise the L

NOTE Confidence: 0.919523298740387

 $00{:}01{:}14.060 \dashrightarrow 00{:}01{:}16.227$ presidents and senior officials on

NOTE Confidence: 0.919523298740387

 $00{:}01{:}16.227 \dashrightarrow 00{:}01{:}19.230$ public health aspects of this we started

NOTE Confidence: 0.919523298740387

00:01:19.306 --> 00:01:21.735 right into the middle of a crisis,

NOTE Confidence: 0.919523298740387

 $00:01:21.740 \longrightarrow 00:01:24.272$ literally just days before the first

NOTE Confidence: 0.919523298740387

 $00{:}01{:}24{.}272 \dashrightarrow 00{:}01{:}26{.}590$ cases in Connecticut and at Yale.

NOTE Confidence: 0.919523298740387

 $00:01:26.590 \dashrightarrow 00:01:28.440$ Or announced we are continuing

NOTE Confidence: 0.919523298740387

 $00:01:28.440 \longrightarrow 00:01:30.290$ to work to this day,

NOTE Confidence: 0.919523298740387

 $00:01:30.290 \longrightarrow 00:01:32.140$ typically in well they used

NOTE Confidence: 0.919523298740387

 $00:01:32.140 \longrightarrow 00:01:33.990$ to be morning phone calls.

NOTE Confidence: 0.919523298740387

 $00:01:33.990 \rightarrow 00:01:36.186$ Now their morning zoom sessions every

NOTE Confidence: 0.919523298740387

00:01:36.186 --> 00:01:38.811 morning at 7:00 o'clock to try and

NOTE Confidence: 0.919523298740387

 $00:01:38.811 \rightarrow 00:01:40.646$ work and support University decisions.

- NOTE Confidence: 0.919523298740387
- $00:01:40.650 \longrightarrow 00:01:43.079$ Here are a number of different committee
- NOTE Confidence: 0.919523298740387
- $00:01:43.079 \rightarrow 00:01:45.459$ issues that have been addressed today.
- NOTE Confidence: 0.919523298740387
- $00{:}01{:}45{.}460 \dashrightarrow 00{:}01{:}48{.}204$ You can read them on the slide yourself
- NOTE Confidence: 0.919523298740387
- $00:01:48.204 \rightarrow 00:01:51.008$ so I won't go through them all,
- NOTE Confidence: 0.919523298740387
- $00{:}01{:}51{.}010 \dashrightarrow 00{:}01{:}53{.}682$ but I just want to mention that the
- NOTE Confidence: 0.919523298740387
- $00:01:53.682 \rightarrow 00:01:56.630$ issues that are highlighted here in orange.
- NOTE Confidence: 0.919523298740387
- $00{:}01{:}56.630 \dashrightarrow 00{:}01{:}58.886$ Are all issues are that involved
- NOTE Confidence: 0.919523298740387
- 00:01:58.886 --> 00:02:01.750 what I would call scratch modeling?
- NOTE Confidence: 0.919523298740387
- $00:02:01.750 \longrightarrow 00:02:03.698$ That is to say,
- NOTE Confidence: 0.919523298740387
- $00:02:03.698 \rightarrow 00:02:05.646$ mathematical models were essentially
- NOTE Confidence: 0.919523298740387
- $00:02:05.646 \rightarrow 00:02:08.557$ created in real time and on the fly
- NOTE Confidence: 0.919523298740387
- $00:02:08.557 \rightarrow 00:02:10.896$ to try and help answer questions
- NOTE Confidence: 0.919523298740387
- $00:02:10.896 \longrightarrow 00:02:12.426$ as they occurred.
- NOTE Confidence: 0.919523298740387
- $00:02:12.430 \rightarrow 00:02:15.028$ So you'll remember for example receiving
- NOTE Confidence: 0.919523298740387
- $00{:}02{:}15{.}028 \dashrightarrow 00{:}02{:}17{.}227$ emails from the administration about
- NOTE Confidence: 0.919523298740387

 $00:02:17.227 \rightarrow 00:02:19.257$ the capping of University advance.

NOTE Confidence: 0.919523298740387

00:02:19.260 --> 00:02:21.900 Initially it size 100 then down to size

NOTE Confidence: 0.919523298740387

 $00:02:21.900 \longrightarrow 00:02:25.302$ 20 and then eventually all events were NOTE Confidence: 0.919523298740387

 $00:02:25.302 \rightarrow 00:02:27.438$ effectively canceled that actually.

NOTE Confidence: 0.919523298740387

00:02:27.440 --> 00:02:29.335 Those recommendations Cam is the

NOTE Confidence: 0.919523298740387

 $00:02:29.335 \dashrightarrow 00:02:31.631$ result of analysis that was conducted NOTE Confidence: 0.919523298740387

00:02:31.631 --> 00:02:34.263 in a principled way trying to come up NOTE Confidence: 0.919523298740387

 $00:02:34.263 \rightarrow 00:02:36.778$ with appropriate crowd caps so that

NOTE Confidence: 0.919523298740387

 $00{:}02{:}36{.}778 \dashrightarrow 00{:}02{:}38{.}898$ the probability that no transmission

NOTE Confidence: 0.919523298740387

 $00{:}02{:}38{.}900 \dashrightarrow 00{:}02{:}41{.}630$ would occur in the event would be

NOTE Confidence: 0.919523298740387

 $00{:}02{:}41{.}630 \dashrightarrow 00{:}02{:}43{.}864$ maintained at least 99% given the

NOTE Confidence: 0.919523298740387

 $00:02:43.864 \dashrightarrow 00:02:46.538$ information that we had at the time.

NOTE Confidence: 0.919523298740387

00:02:46.540 --> 00:02:46.922 Again,

NOTE Confidence: 0.919523298740387

 $00{:}02{:}46{.}922 \dashrightarrow 00{:}02{:}50{.}360$ this was done in the first week of March.

NOTE Confidence: 0.919523298740387

 $00:02:50.360 \rightarrow 00:02:51.788$ Implications for the calendaring.

NOTE Confidence: 0.919523298740387

 $00:02:51.788 \rightarrow 00:02:54.302$ Looking at the design of testing programs

- NOTE Confidence: 0.919523298740387
- $00:02:54.302 \rightarrow 00:02:55.847$ in a particular repeat screening
- NOTE Confidence: 0.919523298740387
- 00:02:55.847 --> 00:02:58.060 and a number of other activities,
- NOTE Confidence: 0.919523298740387
- $00{:}02{:}58.060 \dashrightarrow 00{:}03{:}00.196$ some of which the committee didn't
- NOTE Confidence: 0.919523298740387
- $00:03:00.196 \rightarrow 00:03:02.489$ actually undertake but help to kick start,
- NOTE Confidence: 0.919523298740387
- $00{:}03{:}02{.}490 \dashrightarrow 00{:}03{:}04{.}590$ and they include the activities
- NOTE Confidence: 0.919523298740387
- 00:03:04.590 --> 00:03:06.906 listed here so. Actually, it's been.
- NOTE Confidence: 0.919523298740387
- $00:03:06.906 \rightarrow 00:03:09.370$ It's been quite an experience to get
- NOTE Confidence: 0.919523298740387
- $00:03:09.437 \rightarrow 00:03:11.684$ to know the people on this committee
- NOTE Confidence: 0.919523298740387
- $00:03:11.684 \rightarrow 00:03:13.677$ from across the University and also
- NOTE Confidence: 0.919523298740387
- $00:03:13.677 \rightarrow 00:03:15.924$ to be involved in working on all
- NOTE Confidence: 0.925802230834961
- $00:03:15.930 \longrightarrow 00:03:17.946$ of these issues in real time.
- NOTE Confidence: 0.925802230834961
- 00:03:17.950 --> 00:03:20.630 Today I'd like to talk about two such
- NOTE Confidence: 0.925802230834961
- $00:03:20.630 \rightarrow 00:03:23.317$ projects and will start with a kick start,
- NOTE Confidence: 0.925802230834961
- $00:03:23.320 \rightarrow 00:03:25.707$ which actually has to do with this
- NOTE Confidence: 0.925802230834961
- $00:03:25.707 \rightarrow 00:03:27.383$ sludge sampling project that saw
- NOTE Confidence: 0.925802230834961

 $00:03:27.383 \rightarrow 00:03:29.441$ Domer mentioned when he spoke at the

NOTE Confidence: 0.925802230834961

 $00:03:29.441 \rightarrow 00:03:31.388$ very beginning of the afternoon.

NOTE Confidence: 0.925802230834961

 $00:03:31.390 \rightarrow 00:03:34.070$ And again, this is one of these ideas.

NOTE Confidence: 0.925802230834961

 $00:03:34.070 \rightarrow 00:03:36.436$ It came about a couple of us.

NOTE Confidence: 0.925802230834961

 $00:03:36.440 \longrightarrow 00:03:37.988$ Were thinking what other

NOTE Confidence: 0.925802230834961

 $00:03:37.988 \longrightarrow 00:03:39.536$ ways could one manage?

NOTE Confidence: 0.925802230834961

00:03:39.540 - 00:03:41.718 Uh, what could one gain information

NOTE Confidence: 0.925802230834961

 $00:03:41.718 \rightarrow 00:03:44.179$ about the state of this outbreak,

NOTE Confidence: 0.925802230834961

 $00:03:44.180 \longrightarrow 00:03:46.502$ and the idea came up of

NOTE Confidence: 0.925802230834961

 $00:03:46.502 \rightarrow 00:03:47.276$ environmental monitoring.

NOTE Confidence: 0.925802230834961

 $00:03:47.280 \rightarrow 00:03:50.184$ The problem was is we didn't really know

NOTE Confidence: 0.925802230834961

 $00:03:50.184 \rightarrow 00:03:53.859$ who in the University could do such a thing.

NOTE Confidence: 0.925802230834961

 $00:03:53.860 \longrightarrow 00:03:56.128$ The original proposal was actually to

NOTE Confidence: 0.925802230834961

 $00:03:56.128 \rightarrow 00:03:58.842$ go to Union Station because of the

NOTE Confidence: 0.925802230834961

 $00:03:58.842 \rightarrow 00:04:00.732$ frequent train travel between New

NOTE Confidence: 0.925802230834961

00:04:00.732 --> 00:04:03.511 Haven in New York and possibly study

- NOTE Confidence: 0.925802230834961
- $00:04:03.511 \rightarrow 00:04:05.860$ outflow into toilet swabs there anyway.
- NOTE Confidence: 0.925802230834961
- $00:04:05.860 \rightarrow 00:04:08.590$ Dan Weinberg, who also spoke earlier today.
- NOTE Confidence: 0.925802230834961
- $00:04:08.590 \rightarrow 00:04:10.501$ Uh, suggested to me that the Magic
- NOTE Confidence: 0.925802230834961
- $00:04:10.501 \rightarrow 00:04:12.730$ figure on campus with professor Jordan
- NOTE Confidence: 0.925802230834961
- 00:04:12.730 --> 00:04:14.534 Patcha and environmental engineering,
- NOTE Confidence: 0.925802230834961
- $00{:}04{:}14{.}540 \dashrightarrow 00{:}04{:}16{.}815$ which turns out to be a world
- NOTE Confidence: 0.925802230834961
- $00:04:16.815 \longrightarrow 00:04:19.089$ expert in these kinds of studies.
- NOTE Confidence: 0.925802230834961
- $00:04:19.090 \longrightarrow 00:04:21.190$ I got in touch with Jordan.
- NOTE Confidence: 0.925802230834961
- $00{:}04{:}21{.}190 \dashrightarrow 00{:}04{:}23{.}230$ We had a discussion that same
- NOTE Confidence: 0.925802230834961
- 00:04:23.230 --> 00:04:25.389 day we're now talking March 11th,
- NOTE Confidence: 0.925802230834961
- $00:04:25.390 \rightarrow 00:04:28.009$ and that led to a March 16th meeting with
- NOTE Confidence: 0.925802230834961
- $00:04:28.009 \rightarrow 00:04:29.783$ other researchers who quickly joined
- NOTE Confidence: 0.925802230834961
- $00:04:29.783 \rightarrow 00:04:33.090$ in some who would be doing sample collection.
- NOTE Confidence: 0.925802230834961
- 00:04:33.090 00:04:35.190 Some who are experts in the
- NOTE Confidence: 0.925802230834961
- $00{:}04{:}35{.}190 \dashrightarrow 00{:}04{:}36{.}240$ actual laboratory testing.
- NOTE Confidence: 0.925802230834961

 $00:04:36.240 \rightarrow 00:04:37.640$ Some people contributing analysis.

NOTE Confidence: 0.925802230834961

00:04:37.640 --> 00:04:38.340 Jordan suggestion.

NOTE Confidence: 0.925802230834961

 $00{:}04{:}38{.}340 \dashrightarrow 00{:}04{:}40{.}350$ Everyone agreed that the actual target

NOTE Confidence: 0.925802230834961

 $00:04:40.350 \rightarrow 00:04:42.619$ should be to wastewater treatment plant.

NOTE Confidence: 0.925802230834961

 $00:04:42.620 \rightarrow 00:04:45.734$ Be cause this is a plant which is served

NOTE Confidence: 0.925802230834961

 $00:04:45.734 \rightarrow 00:04:48.247$ serving the populations of New Haven, NOTE Confidence: 0.925802230834961

00:04:48.250 --> 00:04:50.120 Hamden, East Haven and Woodbridge,

NOTE Confidence: 0.925802230834961

 $00:04:50.120 \longrightarrow 00:04:52.166$ and that the collection and detection

NOTE Confidence: 0.925802230834961

 $00{:}04{:}52.166 \dashrightarrow 00{:}04{:}54.425$ of pathogens in Seward Sludge is

NOTE Confidence: 0.925802230834961

 $00:04:54.425 \rightarrow 00:04:56.500$ something which is longstanding practice.

NOTE Confidence: 0.925802230834961

 $00{:}04{:}56{.}500 \dashrightarrow 00{:}04{:}58{.}817$ We put together the two cross campus

NOTE Confidence: 0.925802230834961

 $00:04:58.817 \rightarrow 00:05:01.526$ team and the first samples were already

NOTE Confidence: 0.925802230834961

00:05:01.526 --> 00:05:03.998 being collected on March the 19th,

NOTE Confidence: 0.925802230834961

 $00{:}05{:}04.000 \dashrightarrow 00{:}05{:}06.889$ so less than two weeks from when the idea

NOTE Confidence: 0.925802230834961

 $00:05:06.889 \dashrightarrow 00:05:09.998$ was first raised until the action started.

NOTE Confidence: 0.925802230834961

 $00:05:10.000 \rightarrow 00:05:12.256$ And here is just a cover

- NOTE Confidence: 0.925802230834961
- $00:05:12.256 \longrightarrow 00:05:13.760$ sheet of the article.
- NOTE Confidence: 0.925802230834961
- $00:05:13.760 \dashrightarrow 00:05:16.010$ Coming out that sod again mentioned
- NOTE Confidence: 0.925802230834961
- $00:05:16.010 \dashrightarrow 00:05:18.859$ earlier and I just think it's it's nice
- NOTE Confidence: 0.925802230834961
- $00:05:18.859 \dashrightarrow 00:05:21.759$ to look both of course to acknowledge all
- NOTE Confidence: 0.925802230834961
- $00:05:21.759 \longrightarrow 00:05:24.944$ of the people involved in medical students.
- NOTE Confidence: 0.925802230834961
- $00{:}05{:}24.950 \dashrightarrow 00{:}05{:}27.266$ Other researchers from across the University,
- NOTE Confidence: 0.925802230834961
- $00:05:27.270 \rightarrow 00:05:29.804$ and you can really see how people
- NOTE Confidence: 0.925802230834961
- $00{:}05{:}29{.}804 \dashrightarrow 00{:}05{:}32{.}180$ from across Yale have come together
- NOTE Confidence: 0.925802230834961
- $00:05:32.180 \dashrightarrow 00:05:34.598$ to try and tackle this problem.
- NOTE Confidence: 0.925802230834961
- $00{:}05{:}34.600 \dashrightarrow 00{:}05{:}37.302$ So this is the East shore water
- NOTE Confidence: 0.925802230834961
- 00:05:37.302 --> 00:05:38.074 pollution facility.
- NOTE Confidence: 0.925802230834961
- 00:05:38.080 --> 00:05:40.010 40,000,000 gallons per day capacity.
- NOTE Confidence: 0.925802230834961
- 00:05:40.010 --> 00:05:41.081 As I mentioned,
- NOTE Confidence: 0.925802230834961
- $00{:}05{:}41.081 \dashrightarrow 00{:}05{:}44.078$ it serves these four towns and the idea
- NOTE Confidence: 0.925802230834961
- $00:05:44.078 \rightarrow 00:05:47.018$ here was to start gathering samples daily.
- NOTE Confidence: 0.925802230834961

 $00:05:47.020 \rightarrow 00:05:49.596$ And the analysis I'll share with you

NOTE Confidence: 0.925802230834961

00:05:49.596 --> 00:05:52.362 today is based on data collected from

NOTE Confidence: 0.925802230834961

00:05:52.362 --> 00:05:53.950 March 19th until May,

NOTE Confidence: 0.925802230834961

 $00:05:53.950 \longrightarrow 00:05:54.720$ the first.

NOTE Confidence: 0.925802230834961

 $00:05:54.720 \longrightarrow 00:05:57.415$ You can see the little tag here.

NOTE Confidence: 0.925802230834961

 $00{:}05{:}57{.}420 \dashrightarrow 00{:}05{:}58{.}960$ It says Yale sample.

NOTE Confidence: 0.925802230834961

 $00:05:58.960 \longrightarrow 00:06:00.500$ So here's what happens.

NOTE Confidence: 0.925802230834961

00:06:00.500 --> 00:06:00.885 Actually,

NOTE Confidence: 0.925802230834961

 $00{:}06{:}00.885 \dashrightarrow 00{:}06{:}02.810$ there are two different replicas

NOTE Confidence: 0.925802230834961

 $00:06:02.810 \rightarrow 00:06:04.350$ with two different primers,

NOTE Confidence: 0.925802230834961

 $00{:}06{:}04{.}350 \dashrightarrow 00{:}06{:}06{.}774$ and so here what we see are the

NOTE Confidence: 0.925802230834961

 $00:06:06.774 \dashrightarrow 00:06:08.888$ actual raw measurements of viral

NOTE Confidence: 0.925802230834961

00:06:08.888 --> 00:06:11.278 RNA copies per milliliter here.

NOTE Confidence: 0.925802230834961

 $00:06:11.280 \rightarrow 00:06:13.390$ From these different primary replica

NOTE Confidence: 0.925802230834961

 $00:06:13.390 \rightarrow 00:06:15.078$ combinations viewed overtime and

NOTE Confidence: 0.925802230834961

 $00:06:15.078 \rightarrow 00:06:17.050$ just looking at these raw data.

NOTE Confidence: 0.925802230834961

00:06:17.050 --> 00:06:19.255 You can see that they're very noisy,

NOTE Confidence: 0.925802230834961

 $00:06:19.260 \rightarrow 00:06:21.248$ but you can see the shape actually

NOTE Confidence: 0.925802230834961

 $00{:}06{:}21{.}248 \dashrightarrow 00{:}06{:}22{.}100$ of an epidemic

NOTE Confidence: 0.92478996515274

 $00:06:22.168 \rightarrow 00:06:24.604$ outbreak pretty much from start to finish.

NOTE Confidence: 0.92478996515274

00:06:24.610 --> 00:06:27.445 So how does one analyze noisy data like this?

NOTE Confidence: 0.92478996515274

 $00:06:27.450 \dashrightarrow 00:06:30.600$ Well, the first thing to do is to smooth it.

NOTE Confidence: 0.92478996515274

00:06:30.600 - 00:06:33.120 To do it in a very simple way,

NOTE Confidence: 0.92478996515274

 $00:06:33.120 \rightarrow 00:06:35.010$ we're using something called low as,

NOTE Confidence: 0.92478996515274

 $00:06:35.010 \rightarrow 00:06:36.900$ which is just a locally weighted

NOTE Confidence: 0.92478996515274

 $00:06:36.900 \rightarrow 00:06:38.160$ regression scatter plot smoothing.

NOTE Confidence: 0.92478996515274

00:06:38.160 --> 00:06:39.735 It's a very common technique

NOTE Confidence: 0.92478996515274

 $00{:}06{:}39{.}735 \dashrightarrow 00{:}06{:}41{.}310$ used for problems like this,

NOTE Confidence: 0.92478996515274

 $00:06:41.310 \dashrightarrow 00:06:44.730$ and what we have on this first figure here.

NOTE Confidence: 0.92478996515274

 $00{:}06{:}44.730 \dashrightarrow 00{:}06{:}46.776$ Are raw data and smooths both

NOTE Confidence: 0.92478996515274

 $00{:}06{:}46.776 \dashrightarrow 00{:}06{:}49.120$ for the average RNA measurements,

NOTE Confidence: 0.92478996515274

 $00:06:49.120 \longrightarrow 00:06:52.693$ which are the blue dots and also for daily

NOTE Confidence: 0.92478996515274

 $00:06:52.693 \dashrightarrow 00:06:55.495$ admissions to the Yale New Haven Hospital.

NOTE Confidence: 0.92478996515274

 $00{:}06{:}55{.}500 \dashrightarrow 00{:}06{:}57{.}744$ But we stricted to residents of

NOTE Confidence: 0.92478996515274

 $00:06:57.744 \longrightarrow 00:07:00.583$ the same for towns that is served

NOTE Confidence: 0.92478996515274

 $00:07:00.583 \rightarrow 00:07:02.688$ by the sewage treatment plant.

NOTE Confidence: 0.92478996515274

 $00:07:02.690 \longrightarrow 00:07:05.078$ And if you do the smooth,

NOTE Confidence: 0.92478996515274

 $00:07:05.080 \longrightarrow 00:07:07.684$ it's possible to re scale and reposition

NOTE Confidence: 0.92478996515274

 $00:07:07.684 \rightarrow 00:07:10.138$ and you actually see that these

NOTE Confidence: 0.92478996515274

00:07:10.138 --> 00:07:12.258 sludge RNA measurements were peaking.

NOTE Confidence: 0.92478996515274

 $00:07:12.260 \longrightarrow 00:07:14.885$ This is 3 days before the local

NOTE Confidence: 0.92478996515274

00:07:14.885 --> 00:07:16.660 admissions data were peeking.

NOTE Confidence: 0.92478996515274

00:07:16.660 --> 00:07:19.316 You might have thought that there would be

NOTE Confidence: 0.92478996515274

 $00:07:19.316 \dashrightarrow 00:07:22.065$ a longer lead time than just three days.

NOTE Confidence: 0.92478996515274

 $00{:}07{:}22.070 \dashrightarrow 00{:}07{:}24.408$ Certainly if you compare the RNA measurement

NOTE Confidence: 0.92478996515274

 $00:07:24.408 \dashrightarrow 00:07:27.139$ in the sludge data had actual covert cases,

NOTE Confidence: 0.92478996515274

 $00:07:27.140 \rightarrow 00:07:29.499$ you see much more of a displacement,

NOTE Confidence: 0.92478996515274

 $00:07:29.500 \rightarrow 00:07:31.971$ but remember the kovid cases or following

NOTE Confidence: 0.92478996515274

00:07:31.971 --> 00:07:33.899 from testing delays and also many,

NOTE Confidence: 0.92478996515274

 $00:07:33.900 \rightarrow 00:07:36.024$ many people who are hospitalized don't

NOTE Confidence: 0.92478996515274

 $00:07:36.024 \rightarrow 00:07:38.446$ actually get diagnosed for Cove it until

NOTE Confidence: 0.92478996515274

 $00:07:38.446 \rightarrow 00:07:40.658$ after they've been admitted to the hospital.

NOTE Confidence: 0.92478996515274

 $00{:}07{:}40.660 \dashrightarrow 00{:}07{:}43.524$ So there are all sorts of reasons for

NOTE Confidence: 0.92478996515274

 $00:07:43.524 \rightarrow 00:07:46.945$ why you would expect the longer lag here.

NOTE Confidence: 0.92478996515274

 $00:07:46.950 \longrightarrow 00:07:50.230$ But perhaps a more interesting way to look

NOTE Confidence: 0.92478996515274

 $00:07:50.230 \dashrightarrow 00:07:54.005$ at this information is in this last figure.

NOTE Confidence: 0.92478996515274

00:07:54.010 --> 00:07:56.691 What we have here in this block

NOTE Confidence: 0.92478996515274

00:07:56.691 --> 00:07:59.187 curve is actually what I'll refer

NOTE Confidence: 0.92478996515274

 $00{:}07{:}59{.}187 \dashrightarrow 00{:}08{:}01{.}297$ to as the transmission potential

NOTE Confidence: 0.92478996515274

 $00:08:01.297 \longrightarrow 00:08:03.710$ for a mathematical model,

NOTE Confidence: 0.92478996515274

 $00{:}08{:}03{.}710 \dashrightarrow 00{:}08{:}05{.}840$ which is a SARS covariance

NOTE Confidence: 0.92478996515274

 $00{:}08{:}05{.}840 \dashrightarrow 00{:}08{:}07{.}544$ transmission potential which explicitly

NOTE Confidence: 0.92478996515274

 $00:08:07.544 \longrightarrow 00:08:09.840$ takes into account the variation

NOTE Confidence: 0.92478996515274

 $00:08:09.840 \longrightarrow 00:08:11.644$ infectious infectiousness by time.

NOTE Confidence: 0.92478996515274

00:08:11.650 --> 00:08:14.758 Since infection an one thing I will

NOTE Confidence: 0.92478996515274

 $00:08:14.758 \longrightarrow 00:08:17.840$ mention is that this curve was not.

NOTE Confidence: 0.92478996515274

 $00{:}08{:}17.840 \dashrightarrow 00{:}08{:}19.124$ Calibrated to the sludge.

NOTE Confidence: 0.92478996515274

 $00{:}08{:}19{.}124 \dashrightarrow 00{:}08{:}21{.}696$ Data in the sense of any kind of

NOTE Confidence: 0.92478996515274

 $00:08:21.696 \longrightarrow 00:08:23.430$ a least squares point by point

NOTE Confidence: 0.92478996515274

 $00:08:23.430 \longrightarrow 00:08:25.359$ fit or something like that.

NOTE Confidence: 0.92478996515274

 $00{:}08{:}25{.}360 \dashrightarrow 00{:}08{:}27{.}187$ Whether this is a model that was

NOTE Confidence: 0.92478996515274

 $00:08:27.187 \longrightarrow 00:08:28.751$ informed by early transmission dynamics

NOTE Confidence: 0.92478996515274

 $00{:}08{:}28{.}751 \dashrightarrow 00{:}08{:}30{.}917$ that had been originally estimated in

NOTE Confidence: 0.92478996515274

 $00:08:30.917 \rightarrow 00:08:33.208$ China but then updated for Connecticut,

NOTE Confidence: 0.92478996515274

 $00{:}08{:}33{.}210 \dashrightarrow 00{:}08{:}35{.}457$ and I'm going to go through those

NOTE Confidence: 0.92478996515274

 $00{:}08{:}35{.}457 \dashrightarrow 00{:}08{:}36{.}810$ details and roll them.

NOTE Confidence: 0.92478996515274

 $00:08:36.810 \longrightarrow 00:08:38.340$ And the only real calibration

NOTE Confidence: 0.92478996515274

 $00:08:38.340 \rightarrow 00:08:40.288$ exercise involved was trying to figure

- NOTE Confidence: 0.92478996515274
- $00:08:40.288 \longrightarrow 00:08:41.380$ out looking backwards.
- NOTE Confidence: 0.92478996515274
- $00:08:41.380 \rightarrow 00:08:43.348$ When did this local outbreak start?
- NOTE Confidence: 0.92478996515274
- $00:08:43.350 \longrightarrow 00:08:44.064$ So basically,
- NOTE Confidence: 0.92478996515274
- $00:08:44.064 \rightarrow 00:08:46.563$ it's a matter of just sliding this
- NOTE Confidence: 0.92478996515274
- $00:08:46.563 \rightarrow 00:08:48.908$ curve to the left and to the right,
- NOTE Confidence: 0.92478996515274
- $00{:}08{:}48{.}910 \dashrightarrow 00{:}08{:}50{.}870$ but in terms of the peak in
- NOTE Confidence: 0.92478996515274
- $00:08:50.870 \rightarrow 00:08:52.850$ the timing and everything else.
- NOTE Confidence: 0.92478996515274
- 00:08:52.850 --> 00:08:54.704 It actually just fits this curve
- NOTE Confidence: 0.92478996515274
- $00{:}08{:}54.704 \dashrightarrow 00{:}08{:}56.450$ almost obviously soft little bit here,
- NOTE Confidence: 0.92478996515274
- $00:08:56.450 \rightarrow 00:08:58.550$ but it fits it really quite well
- NOTE Confidence: 0.92478996515274
- $00:08:58.550 \longrightarrow 00:08:59.450$ without the calibration.
- NOTE Confidence: 0.92478996515274
- $00{:}08{:}59{.}450 \dashrightarrow 00{:}09{:}01{.}669$ So that actually gives us reason to
- NOTE Confidence: 0.92478996515274
- $00:09:01.669 \dashrightarrow 00:09:03.649$ think that something is going on here.
- NOTE Confidence: 0.92478996515274
- $00:09:03.650 \rightarrow 00:09:06.350$ So what actually is going on with this curve?
- NOTE Confidence: 0.92478996515274
- $00:09:06.350 \rightarrow 00:09:08.534$ Where is it coming from and how could
- NOTE Confidence: 0.92478996515274

 $00:09:08.534 \rightarrow 00:09:10.846$ it perhaps help us understand why the

NOTE Confidence: 0.92478996515274

 $00:09:10.846 \dashrightarrow 00:09:12.551$ separation between the RNA signal

NOTE Confidence: 0.92478996515274

 $00{:}09{:}12.616 \dashrightarrow 00{:}09{:}14.527$ on the slides in the admissions to

NOTE Confidence: 0.92478996515274

 $00:09:14.527 \rightarrow 00:09:16.798$ hospital is 3 days when some people

NOTE Confidence: 0.92478996515274

 $00:09:16.798 \longrightarrow 00:09:19.373$ might have expected that to be a

NOTE Confidence: 0.92478996515274

 $00:09:19.373 \longrightarrow 00:09:20.709$ much longer lead time?

NOTE Confidence: 0.928790152072906

 $00:09:20.710 \longrightarrow 00:09:23.214$ So to do this, we go back to

NOTE Confidence: 0.928790152072906

 $00:09:23.214 \dashrightarrow 00:09:25.290$ the basics and Epidemiology.

NOTE Confidence: 0.928790152072906

 $00:09:25.290 \rightarrow 00:09:27.462$ Jenny pets are earlier talked about

NOTE Confidence: 0.928790152072906

 $00:09:27.462 \rightarrow 00:09:29.714$ how people estimate what it called

NOTE Confidence: 0.928790152072906

 $00{:}09{:}29{.}714 \dashrightarrow 00{:}09{:}31{.}186$ generation times in exponential

NOTE Confidence: 0.928790152072906

 $00:09:31.186 \longrightarrow 00:09:33.950$ growth rates to try and put together

NOTE Confidence: 0.928790152072906

 $00:09:33.950 \dashrightarrow 00:09:35.990$ estimates of the reproductive number.

NOTE Confidence: 0.928790152072906

 $00:09:35.990 \dashrightarrow 00:09:38.830$ This is a graph which actually shows you

NOTE Confidence: 0.928790152072906

 $00:09:38.830 \rightarrow 00:09:41.717$ what the details of that operation is,

NOTE Confidence: 0.928790152072906

 $00:09:41.720 \rightarrow 00:09:43.532$ what you actually have here is

- NOTE Confidence: 0.928790152072906
- $00:09:43.532 \longrightarrow 00:09:46.318$ a model of the age of infection
- NOTE Confidence: 0.928790152072906
- $00:09:46.318 \dashrightarrow 00:09:47.827$ dependent transmission rate.
- NOTE Confidence: 0.928790152072906
- $00:09:47.830 \longrightarrow 00:09:50.918$ This is an age of infection dependent model.
- NOTE Confidence: 0.928790152072906
- $00:09:50.920 \dashrightarrow 00:09:52.500$ And the famous reproductive number
- NOTE Confidence: 0.928790152072906
- $00:09:52.500 \dashrightarrow 00:09:54.706$ are not that you've all heard about
- NOTE Confidence: 0.928790152072906
- 00:09:54.706 00:09:56.404 so many times today is actually
- NOTE Confidence: 0.928790152072906
- $00:09:56.404 \longrightarrow 00:09:57.959$ the area under this curve.
- NOTE Confidence: 0.928790152072906
- $00{:}09{:}57{.}960 \dashrightarrow 00{:}09{:}59{.}675$ So a person who is infected at
- NOTE Confidence: 0.928790152072906
- $00{:}09{:}59{.}675 \dashrightarrow 00{:}10{:}01{.}298$ the beginning in a surrounded
- NOTE Confidence: 0.928790152072906
- $00:10:01.298 \longrightarrow 00:10:02.549$ by susceptible individuals.
- NOTE Confidence: 0.928790152072906
- $00:10:02.550 \rightarrow 00:10:04.428$ The number of persons that initially
- NOTE Confidence: 0.928790152072906
- $00{:}10{:}04.428 \dashrightarrow 00{:}10{:}06.021$ infected person would in fact
- NOTE Confidence: 0.928790152072906
- $00:10:06.021 \longrightarrow 00:10:07.456$ is actually found directly from
- NOTE Confidence: 0.928790152072906
- $00{:}10{:}07{.}456 \dashrightarrow 00{:}10{:}08{.}970$ the area under this curve.
- NOTE Confidence: 0.928790152072906
- $00:10:08.970 \longrightarrow 00:10:11.112$ This turns out to be a very
- NOTE Confidence: 0.928790152072906

 $00:10:11.112 \rightarrow 00:10:12.030$ very important concept,

NOTE Confidence: 0.928790152072906

00:10:12.030 --> 00:10:13.752 and we're going to come back

NOTE Confidence: 0.928790152072906

 $00:10:13.752 \rightarrow 00:10:15.710$ to it over and over again,

NOTE Confidence: 0.928790152072906

 $00:10:15.710 \longrightarrow 00:10:17.432$ both for this application for the

NOTE Confidence: 0.928790152072906

 $00:10:17.432 \rightarrow 00:10:19.679$ one I'm going to describe next now.

NOTE Confidence: 0.928790152072906

 $00:10:19.680 \rightarrow 00:10:21.444$ Originally in the very first paper

NOTE Confidence: 0.928790152072906

 $00{:}10{:}21{.}444 \dashrightarrow 00{:}10{:}23{.}640$ that came out of Wuhan in the

NOTE Confidence: 0.928790152072906

00:10:23.640 --> 00:10:25.230 New England Journal of Madison.

NOTE Confidence: 0.928790152072906

 $00{:}10{:}25{.}230 \dashrightarrow 00{:}10{:}27{.}822$ We are not was estimated at about 2.3

NOTE Confidence: 0.928790152072906

 $00:10:27.822 \rightarrow 00:10:30.480$ but actually working with Connecticut data.

NOTE Confidence: 0.928790152072906

 $00{:}10{:}30{.}480 \dashrightarrow 00{:}10{:}33{.}216$ Some of the same data that for us

NOTE Confidence: 0.928790152072906

 $00{:}10{:}33.216 \dashrightarrow 00{:}10{:}35.728$ was talking about just moments ago.

NOTE Confidence: 0.928790152072906

 $00{:}10{:}35{.}730 \dashrightarrow 00{:}10{:}37{.}886$ It turned out that in order to

NOTE Confidence: 0.928790152072906

 $00:10:37.886 \longrightarrow 00:10:40.266$ match the early rise in hospital

NOTE Confidence: 0.928790152072906

 $00{:}10{:}40.266 \dashrightarrow 00{:}10{:}42.106$ admissions data in Connecticut,

NOTE Confidence: 0.928790152072906

 $00:10:42.110 \rightarrow 00:10:44.728$ actually a larger are not was needed.

- NOTE Confidence: 0.928790152072906
- $00:10:44.730 \longrightarrow 00:10:47.592$ It works out to be about 3.3 and you
- NOTE Confidence: 0.928790152072906
- $00{:}10{:}47.592 \dashrightarrow 00{:}10{:}49.645$ remember hearing from Nick Rousakis
- NOTE Confidence: 0.928790152072906
- $00:10:49.645 \longrightarrow 00:10:52.600$ that that is in the neighborhood of
- NOTE Confidence: 0.928790152072906
- $00:10:52.600 \rightarrow 00:10:55.253$ where many of the more recent estimates?
- NOTE Confidence: 0.928790152072906
- $00:10:55.260 \rightarrow 00:10:57.312$ Of the reproductive number have have
- NOTE Confidence: 0.928790152072906
- $00:10:57.312 \rightarrow 00:11:00.727$ come in OK, so how do we get this thing?
- NOTE Confidence: 0.928790152072906
- 00:11:00.730 --> 00:11:02.440 I call the transmission potential?
- NOTE Confidence: 0.928790152072906
- $00:11:02.440 \longrightarrow 00:11:03.660$ That is to say,
- NOTE Confidence: 0.928790152072906
- $00:11:03.660 \longrightarrow 00:11:06.321$ how is it that we figure out what
- NOTE Confidence: 0.928790152072906
- $00:11:06.321 \rightarrow 00:11:08.932$ this black curve is in the diagram?
- NOTE Confidence: 0.928790152072906
- 00:11:08.940 --> 00:11:11.187 So here's how it works and we're
- NOTE Confidence: 0.928790152072906
- $00:11:11.187 \longrightarrow 00:11:13.652$ going to follow what I call the
- NOTE Confidence: 0.928790152072906
- $00{:}11{:}13.652 \dashrightarrow 00{:}11{:}15.437$ scratch model in quotation mark.
- NOTE Confidence: 0.928790152072906
- $00{:}11{:}15{.}440 \dashrightarrow 00{:}11{:}17{.}150$ This has been published now
- NOTE Confidence: 0.928790152072906
- $00:11:17.150 \longrightarrow 00:11:18.518$ in the amsam Journal,
- NOTE Confidence: 0.928790152072906

 $00:11:18.520 \longrightarrow 00:11:20.648$ so the first step is we have

NOTE Confidence: 0.928790152072906

 $00{:}11{:}20.648 \dashrightarrow 00{:}11{:}22.280$ this original time dependent.

NOTE Confidence: 0.928790152072906

00:11:22.280 --> 00:11:24.332 I should say age of infection

NOTE Confidence: 0.928790152072906

 $00:11:24.332 \rightarrow 00:11:25.358$ dependent transmission rate.

NOTE Confidence: 0.928790152072906

 $00{:}11{:}25{.}360 \dashrightarrow 00{:}11{:}27{.}520$ We call that. Lambda of eggs.

NOTE Confidence: 0.928790152072906

 $00{:}11{:}27.520 \dashrightarrow 00{:}11{:}29.837$ The second ingredient we have to ask

NOTE Confidence: 0.928790152072906

 $00:11:29.837 \rightarrow 00:11:32.063$ ourselves is what is the problems

NOTE Confidence: 0.928790152072906

 $00:11:32.063 \rightarrow 00:11:34.013$ of infection at chronological time?

NOTE Confidence: 0.928790152072906

 $00:11:34.020 \rightarrow 00:11:34.365$ Key.

NOTE Confidence: 0.928790152072906

 $00:11:34.365 \rightarrow 00:11:36.780$ So the particular data I'm showing you

NOTE Confidence: 0.928790152072906

 $00:11:36.780 \longrightarrow 00:11:39.438$ here is actually from April the 9th,

NOTE Confidence: 0.928790152072906

 $00:11:39.440 \longrightarrow 00:11:41.876$ which is actually at the peak of

NOTE Confidence: 0.928790152072906

 $00:11:41.876 \rightarrow 00:11:44.130$ the viral signal from the sludge.

NOTE Confidence: 0.928790152072906

00:11:44.130 --> 00:11:45.574 So at Time T,

NOTE Confidence: 0.928790152072906

 $00:11:45.574 \rightarrow 00:11:47.740$ how many people in the population?

NOTE Confidence: 0.928790152072906

 $00:11:47.740 \longrightarrow 00:11:49.184$ What percentage have been

- NOTE Confidence: 0.928790152072906
- 00:11:49.184 --> 00:11:50.628 infected for zero days?
- NOTE Confidence: 0.928790152072906
- 00:11:50.630 --> 00:11:53.879 One days, two days, three days and so forth?
- NOTE Confidence: 0.928790152072906
- $00:11:53.880 \rightarrow 00:11:56.040$ And that's computed inside the model.
- NOTE Confidence: 0.928790152072906
- $00:11:56.040 \rightarrow 00:11:58.936$ It's given by this curve pie of 80.
- NOTE Confidence: 0.928790152072906
- $00:11:58.940 \longrightarrow 00:12:01.446$ Notice at this point, by the way,
- NOTE Confidence: 0.928790152072906
- $00:12:01.450 \longrightarrow 00:12:03.949$ that the epidemic is actually waning already.
- NOTE Confidence: 0.928790152072906
- $00{:}12{:}03{.}950 \dashrightarrow 00{:}12{:}05{.}970$ The reason is the maximum
- NOTE Confidence: 0.928790152072906
- $00:12:05.970 \longrightarrow 00:12:08.420$ part of this curve is not.
- NOTE Confidence: 0.928790152072906
- 00:12:08.420 --> 00:12:09.210 At Zero,
- NOTE Confidence: 0.928790152072906
- $00:12:09.210 \rightarrow 00:12:11.580$ which are people just becoming infected,
- NOTE Confidence: 0.928790152072906
- 00:12:11.580 --> 00:12:13.256 time zero really correspond.
- NOTE Confidence: 0.928790152072906
- $00{:}12{:}13.256 \dashrightarrow 00{:}12{:}15.351$ Say incidence it to people
- NOTE Confidence: 0.928790152072906
- $00{:}12{:}15{.}351 \dashrightarrow 00{:}12{:}17{.}725$ who are infected about a week
- NOTE Confidence: 0.928790152072906
- $00{:}12{:}17.725 \dashrightarrow 00{:}12{:}19.605$ earlier and already you see
- NOTE Confidence: 0.921558737754822
- $00:12:19.683 \longrightarrow 00:12:21.458$ a light coming in anyway.
- NOTE Confidence: 0.921558737754822

 $00:12:21.460 \rightarrow 00:12:24.540$ What you have is this fraction of people

NOTE Confidence: 0.921558737754822

 $00{:}12{:}24.540 \dashrightarrow 00{:}12{:}27.659$ who are been infected for a duration a

NOTE Confidence: 0.921558737754822

 $00:12:27.659 \rightarrow 00:12:30.937$ you have this as the age of infection,

NOTE Confidence: 0.921558737754822

 $00:12:30.940 \longrightarrow 00:12:32.065$ a dependent transmission.

NOTE Confidence: 0.921558737754822

00:12:32.065 - 00:12:35.194 So what you have to do is multiply

NOTE Confidence: 0.921558737754822

 $00{:}12{:}35{.}194 \dashrightarrow 00{:}12{:}37{.}750$ these two curves together and that

NOTE Confidence: 0.921558737754822

 $00:12:37.750 \longrightarrow 00:12:40.727$ gives you this great curve down here.

NOTE Confidence: 0.921558737754822

 $00{:}12{:}40{.}730 \dashrightarrow 00{:}12{:}42{.}680$ And a transmission potential is

NOTE Confidence: 0.921558737754822

 $00:12:42.680 \longrightarrow 00:12:45.130$ the area under the Gray curve,

NOTE Confidence: 0.921558737754822

 $00:12:45.130 \longrightarrow 00:12:47.530$ which is given by this interval.

NOTE Confidence: 0.921558737754822

 $00:12:47.530 \longrightarrow 00:12:49.530$ So that's actually where that

NOTE Confidence: 0.921558737754822

 $00:12:49.530 \rightarrow 00:12:51.130$ transmission potential comes from.

NOTE Confidence: 0.921558737754822

00:12:51.130 --> 00:12:54.330 And now you go back and you say,

NOTE Confidence: 0.921558737754822

 $00:12:54.330 \longrightarrow 00:12:55.582$ Well, wait a minute,

NOTE Confidence: 0.921558737754822

 $00:12:55.582 \rightarrow 00:12:57.460$ you showed us a curve of

NOTE Confidence: 0.921558737754822

 $00:12:57.530 \longrightarrow 00:12:59.130$ transmission potential.

- NOTE Confidence: 0.921558737754822
- 00:12:59.130 --> 00:13:00.330 Overtime, that's right,
- NOTE Confidence: 0.921558737754822
- $00:13:00.330 \longrightarrow 00:13:02.330$ that's exactly what I did.
- NOTE Confidence: 0.921558737754822
- $00{:}13{:}02{.}330 \dashrightarrow 00{:}13{:}04{.}906$ Every point on this curve corresponds to
- NOTE Confidence: 0.921558737754822
- $00:13:04.906 \rightarrow 00:13:07.929$ finding an area under the appropriate curve.
- NOTE Confidence: 0.921558737754822
- 00:13:07.930 --> 00:13:09.935 The age of infection transmission
- NOTE Confidence: 0.921558737754822
- $00:13:09.935 \longrightarrow 00:13:10.737$ isn't changing.
- NOTE Confidence: 0.921558737754822
- 00:13:10.740 00:13:12.870 What's changing is how many people
- NOTE Confidence: 0.921558737754822
- 00:13:12.870 --> 00:13:14.919 have been infected for how long,
- NOTE Confidence: 0.921558737754822
- $00:13:14.920 \longrightarrow 00:13:17.696$ so you'll notice here that we have many,
- NOTE Confidence: 0.921558737754822
- $00:13:17.700 \rightarrow 00:13:19.608$ many more people at the beginning
- NOTE Confidence: 0.921558737754822
- $00:13:19.608 \rightarrow 00:13:21.879$ here on the at the beginning,
- NOTE Confidence: 0.921558737754822
- $00{:}13{:}21.880 \dashrightarrow 00{:}13{:}23.630$ the first State of observation
- NOTE Confidence: 0.921558737754822
- $00{:}13{:}23.630 \dashrightarrow 00{:}13{:}25.380$ here was on March 19th.
- NOTE Confidence: 0.921558737754822
- $00{:}13{:}25{.}380 \dashrightarrow 00{:}13{:}26{.}915$ These are people who are
- NOTE Confidence: 0.921558737754822
- $00{:}13{:}26{.}915 \dashrightarrow 00{:}13{:}28{.}450$ infected just right around them,
- NOTE Confidence: 0.921558737754822

 $00:13:28.450 \rightarrow 00:13:30.334$ but of course they're not transmitting

NOTE Confidence: 0.921558737754822

00:13:30.334 --> 00:13:32.268 very much because it takes time

NOTE Confidence: 0.921558737754822

 $00:13:32.268 \longrightarrow 00:13:34.122$ until a person actually transmits the

NOTE Confidence: 0.921558737754822

 $00:13:34.122 \rightarrow 00:13:36.127$ virus and this curve is going down.

NOTE Confidence: 0.921558737754822

 $00:13:36.130 \rightarrow 00:13:38.884$ Here is the same curve I showed you earlier.

NOTE Confidence: 0.921558737754822

 $00:13:38.890 \longrightarrow 00:13:40.762$ This corresponds to the peak period

NOTE Confidence: 0.921558737754822

 $00:13:40.762 \longrightarrow 00:13:42.270$ now corresponding to the end.

NOTE Confidence: 0.921558737754822

 $00:13:42.270 \longrightarrow 00:13:43.494$ Here you'll notice it.

NOTE Confidence: 0.921558737754822

 $00{:}13{:}43{.}494 \dashrightarrow 00{:}13{:}45{.}036$ Actually, the incidence of infection,

NOTE Confidence: 0.921558737754822

 $00:13:45.036 \rightarrow 00:13:47.238$ which much higher three weeks ago here

NOTE Confidence: 0.921558737754822

 $00{:}13{:}47{.}238 \dashrightarrow 00{:}13{:}49{.}014$ and currently it's already very low,

NOTE Confidence: 0.921558737754822

 $00:13:49.020 \longrightarrow 00:13:51.452$ so we get a smaller and we get

NOTE Confidence: 0.921558737754822

 $00:13:51.452 \longrightarrow 00:13:53.978$ a bigger are you get a smaller

NOTE Confidence: 0.921558737754822

 $00{:}13{:}53{.}978 \dashrightarrow 00{:}13{:}56{.}360$ and that's how this model works.

NOTE Confidence: 0.921558737754822

 $00:13:56.360 \rightarrow 00:13:59.097$ And that actually helps explain the mystery,

NOTE Confidence: 0.921558737754822

00:13:59.100 --> 00:14:01.711 because if you now put two curves

- NOTE Confidence: 0.921558737754822
- $00:14:01.711 \longrightarrow 00:14:03.420$ on the same graph,
- NOTE Confidence: 0.921558737754822
- 00:14:03.420 --> 00:14:05.766 both coming out of this model,
- NOTE Confidence: 0.921558737754822
- $00{:}14{:}05{.}770 \dashrightarrow 00{:}14{:}08{.}410$ the curve on the left which would be
- NOTE Confidence: 0.921558737754822
- $00{:}14{:}08{.}410 \dashrightarrow 00{:}14{:}11{.}600$ scared to the left axis is the actual
- NOTE Confidence: 0.921558737754822
- 00:14:11.600 --> 00:14:14.390 incidence of SARS coronavirus two infraction,
- NOTE Confidence: 0.921558737754822
- $00:14:14.390 \longrightarrow 00:14:17.240$ the curve to the right is
- NOTE Confidence: 0.921558737754822
- $00:14:17.240 \longrightarrow 00:14:18.665$ the transmission potential.
- NOTE Confidence: 0.921558737754822
- $00{:}14{:}18.670 \dashrightarrow 00{:}14{:}20.392$ And the separation between the two
- NOTE Confidence: 0.921558737754822
- $00{:}14{:}20{.}392 \dashrightarrow 00{:}14{:}22{.}685$ curves is giving you the time lag
- NOTE Confidence: 0.921558737754822
- $00{:}14{:}22.685 \dashrightarrow 00{:}14{:}24.129$ from incidents to transmission
- NOTE Confidence: 0.921558737754822
- $00:14:24.129 \rightarrow 00:14:25.790$ potential to transmission potential.
- NOTE Confidence: 0.921558737754822
- 00:14:25.790 --> 00:14:28.302 If you think about it is basically how
- NOTE Confidence: 0.921558737754822
- $00:14:28.302 \rightarrow 00:14:30.539$ much virus there isn't a community.
- NOTE Confidence: 0.921558737754822
- $00:14:30.540 \longrightarrow 00:14:33.244$ It's sort of like a community viral load.
- NOTE Confidence: 0.921558737754822
- $00{:}14{:}33{.}250 \dashrightarrow 00{:}14{:}35{.}634$ If there was a way to actually measure
- NOTE Confidence: 0.921558737754822

 $00:14:35.634 \rightarrow 00:14:37.989$ that through viral testing in individuals,

NOTE Confidence: 0.921558737754822

00:14:37.990 --> 00:14:39.490 well effectively we're getting

NOTE Confidence: 0.921558737754822

00:14:39.490 --> 00:14:41.740 a signal of community viral load

NOTE Confidence: 0.921558737754822

 $00:14:41.809 \rightarrow 00:14:43.417$ when we look at the sludge.

NOTE Confidence: 0.921558737754822

 $00{:}14{:}43{.}420 \dashrightarrow 00{:}14{:}46{.}124$ So this is the answer to the mystery,

NOTE Confidence: 0.921558737754822

00:14:46.130 - 00:14:48.850 because when we go back and say, Well,

NOTE Confidence: 0.921558737754822

 $00{:}14{:}48.850 \dashrightarrow 00{:}14{:}50.600$ let's look at hospital admissions.

NOTE Confidence: 0.921558737754822

00:14:50.600 --> 00:14:51.820 Hospital admissions, of course,

NOTE Confidence: 0.921558737754822

 $00:14:51.820 \longrightarrow 00:14:53.345$ are also lag from incidents,

NOTE Confidence: 0.921558737754822

 $00:14:53.350 \longrightarrow 00:14:55.261$ but it turns out that there lag

NOTE Confidence: 0.921558737754822

 $00{:}14{:}55{.}261 \dashrightarrow 00{:}14{:}57{.}309$ longer than the time from infection.

NOTE Confidence: 0.921558737754822

 $00{:}14{:}57{.}310 \dashrightarrow 00{:}14{:}58{.}530$ Until this trans transmission

NOTE Confidence: 0.921558737754822

 $00:14:58.530 \longrightarrow 00:14:59.750$ potential moves they had.

NOTE Confidence: 0.921558737754822

 $00{:}14{:}59{.}750 \dashrightarrow 00{:}15{:}01{.}885$ This is about a nine day lag.

NOTE Confidence: 0.921558737754822

 $00:15:01.890 \longrightarrow 00:15:04.210$ There's an extra 3 days here until you

NOTE Confidence: 0.921558737754822

 $00{:}15{:}04{.}210 \dashrightarrow 00{:}15{:}06{.}158$ actually would see the admissions data,

NOTE Confidence: 0.921558737754822

 $00:15:06.160 \longrightarrow 00:15:07.990$ Peking, so that's an interesting story.

NOTE Confidence: 0.921558737754822

 $00{:}15{:}07{.}990 \dashrightarrow 00{:}15{:}10{.}534$ It does tell you that you can understand

NOTE Confidence: 0.921558737754822

 $00:15:10.534 \rightarrow 00:15:12.557$ what's going on in the sludge data,

NOTE Confidence: 0.921558737754822

 $00{:}15{:}12.560 \dashrightarrow 00{:}15{:}14.300$ but it also answers the question

NOTE Confidence: 0.921558737754822

00:15:14.300 - 00:15:16.810 as to why the lead time is perhaps

NOTE Confidence: 0.921558737754822

 $00:15:16.810 \longrightarrow 00:15:18.736$ not as large as people thought

NOTE Confidence: 0.923745512962341

 $00:15:18.807 \longrightarrow 00:15:21.100$ that it would be. Let's move on to

NOTE Confidence: 0.923745512962341

 $00:15:21.100 \rightarrow 00:15:22.320$ a completely different problem.

NOTE Confidence: 0.923745512962341

 $00:15:22.320 \longrightarrow 00:15:24.200$ It's also related to some.

NOTE Confidence: 0.923745512962341

 $00:15:24.200 \longrightarrow 00:15:26.790$ Forest talked about an it has to

NOTE Confidence: 0.923745512962341

 $00:15:26.790 \longrightarrow 00:15:29.475$ do with repeat screening for the

NOTE Confidence: 0.923745512962341

 $00:15:29.475 \rightarrow 00:15:32.463$ detection and control of this outbreak,

NOTE Confidence: 0.923745512962341

 $00:15:32.470 \longrightarrow 00:15:34.402$ and the emphasis here is really

NOTE Confidence: 0.923745512962341

 $00{:}15{:}34{.}402 \dashrightarrow 00{:}15{:}36{.}848$ going to be on the detection

NOTE Confidence: 0.923745512962341

 $00{:}15{:}36{.}848 \dashrightarrow 00{:}15{:}39{.}008$ and isolation of asymptomatic

NOTE Confidence: 0.923745512962341

 $00:15:39.008 \rightarrow 00:15:41.168$ infections through viral testing.

NOTE Confidence: 0.923745512962341

 $00{:}15{:}41{.}170 \dashrightarrow 00{:}15{:}43{.}949$ As we learn from Jenny Ann from

NOTE Confidence: 0.923745512962341

 $00:15:43.949 \rightarrow 00:15:46.390$ others who spoke earlier today,

NOTE Confidence: 0.923745512962341

 $00:15:46.390 \longrightarrow 00:15:49.043$ most of the testing due date has

NOTE Confidence: 0.923745512962341

 $00:15:49.043 \rightarrow 00:15:51.609$ been people who were symptomatic.

NOTE Confidence: 0.923745512962341

 $00{:}15{:}51{.}610 \dashrightarrow 00{:}15{:}54{.}250$ As a consequence, you have cases.

NOTE Confidence: 0.923745512962341

 $00:15:54.250 \longrightarrow 00:15:56.385$ Driving tests as opposed to

NOTE Confidence: 0.923745512962341

 $00:15:56.385 \rightarrow 00:15:57.666$ test discovering infections.

NOTE Confidence: 0.923745512962341

 $00{:}15{:}57{.}670 \dashrightarrow 00{:}15{:}59{.}810$ With the advent of testing

NOTE Confidence: 0.923745512962341

 $00:15:59.810 \rightarrow 00:16:01.522$ more more easily available,

NOTE Confidence: 0.923745512962341

 $00:16:01.530 \longrightarrow 00:16:02.384$ more frequent,

NOTE Confidence: 0.923745512962341

 $00:16:02.384 \rightarrow 00:16:04.946$ the ability to test more frequently.

NOTE Confidence: 0.923745512962341

 $00{:}16{:}04{.}950 \dashrightarrow 00{:}16{:}07{.}116$ We can turn that around and

NOTE Confidence: 0.923745512962341

 $00:16:07.116 \longrightarrow 00:16:09.696$ we can actually use testing to

NOTE Confidence: 0.923745512962341

 $00{:}16{:}09{.}696 \dashrightarrow 00{:}16{:}11{.}800$ detect and isolate infections.

NOTE Confidence: 0.923745512962341

 $00:16:11.800 \longrightarrow 00:16:14.635$ The idea here is to gain actual

- NOTE Confidence: 0.923745512962341
- $00:16:14.635 \longrightarrow 00:16:16.389$ control of transmission and
- NOTE Confidence: 0.923745512962341
- $00:16:16.389 \rightarrow 00:16:18.217$ to prevent local outbreaks.
- NOTE Confidence: 0.923745512962341
- $00:16:18.220 \longrightarrow 00:16:20.355$ So it's not only about
- NOTE Confidence: 0.923745512962341
- $00:16:20.355 \rightarrow 00:16:21.636$ identifying individual patients.
- NOTE Confidence: 0.923745512962341
- $00:16:21.640 \longrightarrow 00:16:23.932$ Most of these people actually would
- NOTE Confidence: 0.923745512962341
- $00:16:23.932 \rightarrow 00:16:26.360$ not have serious medical consequences.
- NOTE Confidence: 0.923745512962341
- $00{:}16{:}26{.}360 \dashrightarrow 00{:}16{:}28{.}346$ The issue is to block transmission
- NOTE Confidence: 0.923745512962341
- $00{:}16{:}28{.}346 \dashrightarrow 00{:}16{:}31{.}015$ and to do this in an efficient
- NOTE Confidence: 0.923745512962341
- $00:16:31.015 \rightarrow 00:16:32.715$ way requires intensive screening
- NOTE Confidence: 0.923745512962341
- $00:16:32.715 \longrightarrow 00:16:34.810$ not once every six months,
- NOTE Confidence: 0.923745512962341
- $00:16:34.810 \longrightarrow 00:16:37.498$ once every four months, once a month.
- NOTE Confidence: 0.923745512962341
- 00:16:37.500 --> 00:16:39.032 It requires intensive screening,
- NOTE Confidence: 0.923745512962341
- 00:16:39.032 --> 00:16:40.947 and so as I said,
- NOTE Confidence: 0.923745512962341
- $00{:}16{:}40{.}950 \dashrightarrow 00{:}16{:}43{.}248$ the focus here is to screen
- NOTE Confidence: 0.923745512962341
- $00:16:43.248 \longrightarrow 00:16:44.014$ asymptomatic screen.
- NOTE Confidence: 0.923745512962341

00:16:44.020 --> 00:16:45.136 For asymptomatic infections,

NOTE Confidence: 0.923745512962341

 $00:16:45.136 \longrightarrow 00:16:47.740$ the goal is to shorten the time

NOTE Confidence: 0.923745512962341

 $00{:}16{:}47.807 \dashrightarrow 00{:}16{:}49.637$ from infection until the isolation

NOTE Confidence: 0.923745512962341

 $00:16:49.637 \rightarrow 00:16:52.090$ of those people who test positive.

NOTE Confidence: 0.923745512962341

00:16:52.090 --> 00:16:54.010 This is all PCR testing,

NOTE Confidence: 0.923745512962341

 $00:16:54.010 \rightarrow 00:16:56.380$ not antibody testing. This is all.

NOTE Confidence: 0.923745512962341

 $00{:}16{:}56{.}380 \dashrightarrow 00{:}17{:}00{.}508$ Based on PCR and so this is written

NOTE Confidence: 0.923745512962341

 $00{:}17{:}00{.}508 \dashrightarrow 00{:}17{:}03{.}129$ recently been written about.

NOTE Confidence: 0.923745512962341

 $00:17:03.130 \longrightarrow 00:17:05.601$ I'm hopeful home with how we form NOTE Confidence: 0.923745512962341

 $00{:}17{:}05{.}601 \dashrightarrow 00{:}17{:}08{.}006$ in another doctor that many of you

NOTE Confidence: 0.923745512962341

 $00{:}17{:}08.006 \dashrightarrow 00{:}17{:}10.421$ know at the medical school is also

NOTE Confidence: 0.923745512962341

 $00{:}17{:}10.421 \dashrightarrow 00{:}17{:}12.566$ cross appointed with the management

NOTE Confidence: 0.923745512962341

 $00:17:12.566 \rightarrow 00:17:15.190$ school in focusing on how to actually

NOTE Confidence: 0.923745512962341

 $00:17:15.190 \longrightarrow 00:17:17.290$ do this at a large level because

NOTE Confidence: 0.923745512962341

 $00{:}17{:}17{.}356 \dashrightarrow 00{:}17{:}19{.}576$ the logistics of rapid screening

NOTE Confidence: 0.923745512962341

00:17:19.576 --> 00:17:21.352 can easily become overwhelming,

- NOTE Confidence: 0.923745512962341
- $00{:}17{:}21.360 \dashrightarrow 00{:}17{:}22.844$ but nonetheless it's a
- NOTE Confidence: 0.923745512962341
- $00:17:22.844 \rightarrow 00:17:23.957$ very important activity.
- NOTE Confidence: 0.923745512962341
- $00:17:23.960 \longrightarrow 00:17:26.560$ If the idea is to try an really
- NOTE Confidence: 0.923745512962341
- $00{:}17{:}26.560 \dashrightarrow 00{:}17{:}28.799$ curtail the spread of infection.
- NOTE Confidence: 0.923745512962341
- $00:17:28.800 \longrightarrow 00:17:30.660$ So how does this work?
- NOTE Confidence: 0.923745512962341
- 00:17:30.660 --> 00:17:30.998 Well,
- NOTE Confidence: 0.923745512962341
- $00:17:30.998 \rightarrow 00:17:34.040$ I'm going to kind of break this up into
- NOTE Confidence: 0.923745512962341
- $00:17:34.121 \longrightarrow 00:17:36.977$ 100 level courses to 200 level course.
- NOTE Confidence: 0.923745512962341
- $00{:}17{:}36{.}980 \dashrightarrow 00{:}17{:}37{.}991$ New graduate course.
- NOTE Confidence: 0.923745512962341
- $00:17:37.991 \longrightarrow 00:17:39.676$ So here's the 100 level.
- NOTE Confidence: 0.923745512962341
- 00:17:39.680 --> 00:17:40.308 Of course,
- NOTE Confidence: 0.923745512962341
- $00{:}17{:}40{.}308 \dashrightarrow 00{:}17{:}42{.}192$ let's all pretend that in fact
- NOTE Confidence: 0.923745512962341
- $00{:}17{:}42.192 \dashrightarrow 00{:}17{:}43.669$ Christmas runs about 2 weeks.
- NOTE Confidence: 0.923745512962341
- $00{:}17{:}43.670 \dashrightarrow 00{:}17{:}45.512$ And let's assume that we have
- NOTE Confidence: 0.923745512962341
- $00{:}17{:}45{.}512 \dashrightarrow 00{:}17{:}46{.}740$ a perfectly sensitive test.
- NOTE Confidence: 0.923745512962341

 $00:17:46.740 \longrightarrow 00:17:48.702$ And let's assume that we schedule

NOTE Confidence: 0.923745512962341

 $00{:}17{:}48.702 \dashrightarrow 00{:}17{:}50.728$ every body to get screened once a week.

NOTE Confidence: 0.923745512962341

 $00:17:50.730 \rightarrow 00:17:53.484$ So Dan is going to be screened on Mondays,

NOTE Confidence: 0.923745512962341

 $00:17:53.490 \longrightarrow 00:17:55.632$ and forest is going to be screened

NOTE Confidence: 0.923745512962341

 $00{:}17{:}55{.}632 \dashrightarrow 00{:}17{:}56{.}244$ on Wednesdays,

NOTE Confidence: 0.923745512962341

 $00{:}17{:}56{.}250 \dashrightarrow 00{:}17{:}58{.}504$ and I'm going to be screened on

NOTE Confidence: 0.923745512962341

 $00{:}17{:}58{.}504 \dashrightarrow 00{:}18{:}00{.}384$ Sundays and basically once a week

NOTE Confidence: 0.923745512962341

 $00:18:00.384 \longrightarrow 00:18:02.082$ we're each going to be tested.

NOTE Confidence: 0.923745512962341

00:18:02.090 --> 00:18:03.926 If this test was perfectly sensitive,

NOTE Confidence: 0.923745512962341

 $00:18:03.930 \rightarrow 00:18:05.570$ what's going to happen well

NOTE Confidence: 0.923745512962341

 $00{:}18{:}05{.}570 \dashrightarrow 00{:}18{:}07{.}210$ where the infection would fall

NOTE Confidence: 0.923745512962341

 $00:18:07.276 \longrightarrow 00:18:08.920$ if one of us became infected?

NOTE Confidence: 0.923745512962341

 $00:18:08.920 \longrightarrow 00:18:10.172$ The infection knows nothing

NOTE Confidence: 0.923745512962341

 $00:18:10.172 \longrightarrow 00:18:11.424$ about the screening process.

NOTE Confidence: 0.923745512962341

 $00:18:11.430 \longrightarrow 00:18:12.372$ It's totally independent

NOTE Confidence: 0.923745512962341

 $00:18:12.372 \longrightarrow 00:18:13.628$ of the screening process,

- NOTE Confidence: 0.923745512962341
- $00:18:13.630 \longrightarrow 00:18:15.200$ so on average it's going
- NOTE Confidence: 0.923745512962341
- $00:18:15.200 \longrightarrow 00:18:16.770$ to fall in the middle.
- NOTE Confidence: 0.923745512962341
- 00:18:16.770 --> 00:18:18.340 It would distribute itself uniformly.
- NOTE Confidence: 0.923745512962341
- $00:18:18.340 \longrightarrow 00:18:20.556$ So what that means is that you would
- NOTE Confidence: 0.923745512962341
- $00{:}18{:}20.556 \dashrightarrow 00{:}18{:}22.549$ be detecting infections on average 3.5
- NOTE Confidence: 0.923745512962341
- $00:18:22.549 \rightarrow 00:18:24.619$ days after the person was infected.
- NOTE Confidence: 0.923745512962341
- 00:18:24.620 --> 00:18:26.190 Some people you detect only
- NOTE Confidence: 0.923745512962341
- $00:18:26.190 \longrightarrow 00:18:27.760$ some people you detect later,
- NOTE Confidence: 0.927935659885406
- $00:18:27.760 \longrightarrow 00:18:30.024$ but on average would be 3.5 days and
- NOTE Confidence: 0.927935659885406
- $00:18:30.024 \rightarrow 00:18:32.468$ at most Seven days after they occur.
- NOTE Confidence: 0.927935659885406
- $00:18:32.470 \longrightarrow 00:18:34.639$ If you believe that there's a 14 day course
- NOTE Confidence: 0.927935659885406
- 00:18:34.639 --> 00:18:36.868 of infectiousness into detecting people,
- NOTE Confidence: 0.927935659885406
- 00:18:36.870 --> 00:18:38.440 on average after 3.5 days,
- NOTE Confidence: 0.927935659885406
- $00:18:38.440 \longrightarrow 00:18:40.354$ that's one quarter of the way
- NOTE Confidence: 0.927935659885406
- $00:18:40.354 \rightarrow 00:18:41.630$ through the infectious period.
- NOTE Confidence: 0.927935659885406

 $00:18:41.630 \rightarrow 00:18:43.996$ Which means that you would be blocking

NOTE Confidence: 0.927935659885406

00:18:43.996 --> 00:18:46.258 3/4 of 75% of potential transmission days.

NOTE Confidence: 0.927935659885406

 $00:18:46.258 \rightarrow 00:18:48.564$ If you isolate people who you are

NOTE Confidence: 0.927935659885406

 $00:18:48.564 \rightarrow 00:18:50.080$ finding testing positive alright,

NOTE Confidence: 0.927935659885406

 $00{:}18{:}50{.}080 \dashrightarrow 00{:}18{:}52{.}108$ but we noted the screening tests

NOTE Confidence: 0.927935659885406

 $00:18:52.108 \rightarrow 00:18:53.460$ are not perfectly Saturday.

NOTE Confidence: 0.927935659885406

 $00:18:53.460 \longrightarrow 00:18:55.150$ Suppose it's only 70% sensitive.

NOTE Confidence: 0.927935659885406

 $00:18:55.150 \rightarrow 00:18:57.142$ What's going to happen while in

NOTE Confidence: 0.927935659885406

00:18:57.142 --> 00:18:59.206 the first week you would catch

NOTE Confidence: 0.927935659885406

 $00:18:59.206 \rightarrow 00:19:01.230$ 70% of people who are infected?

NOTE Confidence: 0.927935659885406

 $00{:}19{:}01{.}230 \dashrightarrow 00{:}19{:}03{.}576$ But there's also a 21% chance it

NOTE Confidence: 0.927935659885406

 $00:19:03.576 \longrightarrow 00:19:05.544$ would catch someone who was infected

NOTE Confidence: 0.927935659885406

 $00:19:05.544 \rightarrow 00:19:08.237$ in the first week in the second week

NOTE Confidence: 0.927935659885406

 $00{:}19{:}08{.}237 \dashrightarrow 00{:}19{:}10{.}319$ because they could test negative in

NOTE Confidence: 0.927935659885406

 $00:19:10.319 \rightarrow 00:19:12.776$ the first week but still test positive.

NOTE Confidence: 0.927935659885406

 $00:19:12.780 \longrightarrow 00:19:14.120$ In the second week,

- NOTE Confidence: 0.927935659885406
- $00:19:14.120 \rightarrow 00:19:15.795$ this is assuming that sensitivity
- NOTE Confidence: 0.927935659885406
- 00:19:15.795 -> 00:19:17.962 is not dependent on an individual's
- NOTE Confidence: 0.927935659885406
- 00:19:17.962 --> 00:19:20.213 biologies and a person who would
- NOTE Confidence: 0.927935659885406
- $00{:}19{:}20{.}213 \dashrightarrow 00{:}19{:}22{.}308$ test negative falsely would always
- NOTE Confidence: 0.927935659885406
- $00:19:22.308 \longrightarrow 00:19:23.565$ test negative falsely.
- NOTE Confidence: 0.927935659885406
- $00:19:23.570 \longrightarrow 00:19:25.682$ Rather the assumption here is that
- NOTE Confidence: 0.927935659885406
- $00:19:25.682 \rightarrow 00:19:27.981$ the real reason for imperfect testing
- NOTE Confidence: 0.927935659885406
- $00:19:27.981 \rightarrow 00:19:30.447$ and for less than perfect sensitivity
- NOTE Confidence: 0.927935659885406
- $00:19:30.447 \longrightarrow 00:19:33.031$ here has more to do a sample
- NOTE Confidence: 0.927935659885406
- $00{:}19{:}33{.}031 \dashrightarrow 00{:}19{:}34{.}726$ collection and issues like that.
- NOTE Confidence: 0.927935659885406
- $00:19:34.730 \longrightarrow 00:19:37.334$ So now it turns out that instead
- NOTE Confidence: 0.927935659885406
- 00:19:37.334 --> 00:19:39.194 of blocking 75% of transmission,
- NOTE Confidence: 0.927935659885406
- 00:19:39.194 --> 00:19:41.070 you block 58% of transmission.
- NOTE Confidence: 0.927935659885406
- 00:19:41.070 --> 00:19:42.970 But that's still pretty effective.
- NOTE Confidence: 0.927935659885406
- $00{:}19{:}42{.}970 \dashrightarrow 00{:}19{:}45{.}370$ If you have a root productive number in
- NOTE Confidence: 0.927935659885406

 $00:19:45.370 \rightarrow 00:19:46.972$ the neighborhood of two, for example,

NOTE Confidence: 0.927935659885406

 $00:19:46.972 \rightarrow 00:19:49.188$ and you're blocking 58% of the transmission,

NOTE Confidence: 0.927935659885406

 $00:19:49.188 \longrightarrow 00:19:51.680$ that would already get you below 1.

NOTE Confidence: 0.927935659885406

 $00:19:51.680 \longrightarrow 00:19:53.618$ So that's The Level 100 course

NOTE Confidence: 0.927935659885406

 $00:19:53.618 \rightarrow 00:19:54.910$ rationalization for repeat screening.

NOTE Confidence: 0.927935659885406

 $00:19:54.910 \longrightarrow 00:19:57.326$ Now what I'd like to do is give

NOTE Confidence: 0.927935659885406

 $00:19:57.326 \longrightarrow 00:19:59.432$ you the level two, of course,

NOTE Confidence: 0.927935659885406

 $00:19:59.432 \longrightarrow 00:20:00.716$ so remember this graph.

NOTE Confidence: 0.927935659885406

 $00:20:00.720 \longrightarrow 00:20:02.988$ It's our friend from the earlier study.

NOTE Confidence: 0.927935659885406

 $00:20:02.990 \rightarrow 00:20:04.278$ This is the transmissibility

NOTE Confidence: 0.927935659885406

 $00:20:04.278 \longrightarrow 00:20:05.566$ by age of infection,

NOTE Confidence: 0.927935659885406

 $00{:}20{:}05{.}570 \dashrightarrow 00{:}20{:}08{.}020$ and suppose I detect an infected person

NOTE Confidence: 0.927935659885406

 $00:20:08.020 \rightarrow 00:20:10.410$ by screening right here at the red line,

NOTE Confidence: 0.927935659885406

 $00:20:10.410 \longrightarrow 00:20:12.482$ all right and where that red line

NOTE Confidence: 0.927935659885406

 $00:20:12.482 \rightarrow 00:20:15.022$ is going to fall is going to depend

NOTE Confidence: 0.927935659885406

 $00{:}20{:}15.022 \dashrightarrow 00{:}20{:}17.356$ on how frequently I test if I'm

- NOTE Confidence: 0.927935659885406
- $00:20:17.356 \rightarrow 00:20:19.066$ testing quite frequently is going
- NOTE Confidence: 0.927935659885406
- $00:20:19.066 \rightarrow 00:20:21.730$ to push the red line to the left.
- NOTE Confidence: 0.927935659885406
- 00:20:21.730 --> 00:20:23.458 If I'm not testing so frequently,
- NOTE Confidence: 0.927935659885406
- $00:20:23.460 \rightarrow 00:20:25.756$ it pushes the red line to the right,
- NOTE Confidence: 0.927935659885406
- 00:20:25.760 --> 00:20:27.488 but wherever the Red Line Falls,
- NOTE Confidence: 0.927935659885406
- $00:20:27.490 \rightarrow 00:20:29.506$ if you isolate the person found infectious,
- NOTE Confidence: 0.927935659885406
- $00:20:29.510 \longrightarrow 00:20:31.386$ the blue area to the right of
- NOTE Confidence: 0.927935659885406
- $00:20:31.386 \longrightarrow 00:20:32.959$ the red line is blocked,
- NOTE Confidence: 0.927935659885406
- $00:20:32.960 \longrightarrow 00:20:34.112$ its transmission that would
- NOTE Confidence: 0.927935659885406
- $00:20:34.112 \longrightarrow 00:20:35.264$ have happened but doesn't.
- NOTE Confidence: 0.927935659885406
- $00:20:35.270 \rightarrow 00:20:37.139$ The new reproductive number you have as
- NOTE Confidence: 0.927935659885406
- $00:20:37.139 \rightarrow 00:20:39.177$ a result of the repeat screening program
- NOTE Confidence: 0.927935659885406
- $00:20:39.177 \rightarrow 00:20:41.310$ is still the area under the curve,
- NOTE Confidence: 0.927935659885406
- $00{:}20{:}41.310 \dashrightarrow 00{:}20{:}43.614$ but it's only the area of this part,
- NOTE Confidence: 0.927935659885406
- $00:20:43.620 \longrightarrow 00:20:44.540$ right here.
- NOTE Confidence: 0.927935659885406

- 00:20:44.540 --> 00:20:45.920 Now of course,
- NOTE Confidence: 0.927935659885406
- $00{:}20{:}45{.}920 \dashrightarrow 00{:}20{:}48{.}056$ the timing which this is interrupted
- NOTE Confidence: 0.927935659885406
- $00:20:48.056 \rightarrow 00:20:49.124$ is itself random,
- NOTE Confidence: 0.927935659885406
- $00:20:49.130 \longrightarrow 00:20:50.915$ because while you might be
- NOTE Confidence: 0.927935659885406
- 00:20:50.915 --> 00:20:51.986 screening on schedule,
- NOTE Confidence: 0.927935659885406
- $00:20:51.990 \longrightarrow 00:20:53.414$ the infection isn't infecting
- NOTE Confidence: 0.927935659885406
- $00:20:53.414 \rightarrow 00:20:55.194$ people on the same schedule,
- NOTE Confidence: 0.927935659885406
- 00:20:55.200 00:20:57.992 so you have to take into account the
- NOTE Confidence: 0.927935659885406
- 00:20:57.992 --> 00:20:59.838 distribution of where this lies,
- NOTE Confidence: 0.927935659885406
- $00:20:59.840 \longrightarrow 00:21:00.554$ but mathematically,
- NOTE Confidence: 0.927935659885406
- $00:21:00.554 \longrightarrow 00:21:02.696$ that is not difficult to do.
- NOTE Confidence: 0.927935659885406
- $00:21:02.700 \longrightarrow 00:21:05.252$ So now will go to the graduate course
- NOTE Confidence: 0.927935659885406
- 00:21:05.252 --> 00:21:07.700 and just to make life interesting,
- NOTE Confidence: 0.927935659885406
- $00:21:07.700 \longrightarrow 00:21:09.480$ let's imagine that we're considering
- NOTE Confidence: 0.927935659885406
- $00:21:09.480 \longrightarrow 00:21:10.548$ a residential campus,
- NOTE Confidence: 0.927935659885406
- $00:21:10.550 \rightarrow 00:21:12.758$ and maybe that residential campus has

NOTE Confidence: 0.927935659885406

00:21:12.758 --> 00:21:15.200 10,000 students who are living on site.

NOTE Confidence: 0.915225088596344

00:21:15.200 --> 00:21:17.671 And here are the kinds of parameter

NOTE Confidence: 0.915225088596344

 $00{:}21{:}17.671 \dashrightarrow 00{:}21{:}19.896$ variations that we consider here at

NOTE Confidence: 0.915225088596344

 $00:21:19.896 \rightarrow 00:21:22.080$ the beginning of the school year,

NOTE Confidence: 0.915225088596344

 $00{:}21{:}22.080 \dashrightarrow 00{:}21{:}23.715$ everyone is susceptible or perhaps

NOTE Confidence: 0.915225088596344

 $00:21:23.715 \rightarrow 00:21:26.060$ looking at some of forest projections,

NOTE Confidence: 0.915225088596344

 $00:21:26.060 \rightarrow 00:21:28.232$ maybe 15% or more have already

NOTE Confidence: 0.915225088596344

 $00:21:28.232 \longrightarrow 00:21:30.408$ become infected, and so maybe only

NOTE Confidence: 0.915225088596344

 $00{:}21{:}30{.}408 \dashrightarrow 00{:}21{:}32{.}580$ 80% of the students are susceptible.

NOTE Confidence: 0.915225088596344

 $00:21:32.580 \rightarrow 00:21:35.099$ Suppose the tests are only 70% sensitive.

NOTE Confidence: 0.915225088596344

00:21:35.099 - 00:21:36.844 These are all variables which

NOTE Confidence: 0.915225088596344

 $00:21:36.844 \rightarrow 00:21:39.090$ can be changed in the analysis.

NOTE Confidence: 0.915225088596344

 $00:21:39.090 \longrightarrow 00:21:40.494$ Suppose we test weekly.

NOTE Confidence: 0.915225088596344

 $00{:}21{:}40{.}494 \dashrightarrow 00{:}21{:}43{.}044$ Suppose we test by e week was suppose

NOTE Confidence: 0.915225088596344

 $00:21:43.044 \longrightarrow 00:21:45.300$ we don't bother testing at all.

NOTE Confidence: 0.915225088596344

 $00:21:45.300 \longrightarrow 00:21:47.304$ Suppose we account not only for

NOTE Confidence: 0.915225088596344

00:21:47.304 --> 00:21:48.306 internally generated outbreaks

NOTE Confidence: 0.915225088596344

00:21:48.306 - 00:21:49.820 where you start with your RO,

NOTE Confidence: 0.915225088596344

 $00:21:49.820 \rightarrow 00:21:51.320$ an initial person comes in,

NOTE Confidence: 0.915225088596344

 $00:21:51.320 \longrightarrow 00:21:53.660$ or a couple of people come in infected and

NOTE Confidence: 0.915225088596344

 $00{:}21{:}53{.}660 \dashrightarrow 00{:}21{:}56{.}139$ the whole thing just generates from there,

NOTE Confidence: 0.915225088596344

 $00:21:56.140 \rightarrow 00:21:57.676$ but you also include the possibility

NOTE Confidence: 0.915225088596344

 $00:21:57.676 \rightarrow 00:21:59.750$ it we have a residential campus.

NOTE Confidence: 0.915225088596344

 $00{:}21{:}59{.}750 \dashrightarrow 00{:}22{:}01{.}857$ People are going to go off campus,

NOTE Confidence: 0.915225088596344

 $00:22:01.860 \rightarrow 00:22:03.660$ don't be infected in the community,

NOTE Confidence: 0.915225088596344

 $00{:}22{:}03.660 \dashrightarrow 00{:}22{:}05.514$ and bring infections back that it

NOTE Confidence: 0.915225088596344

 $00:22:05.514 \rightarrow 00:22:07.667$ campus or visitors from off campus could

NOTE Confidence: 0.915225088596344

 $00{:}22{:}07.667 \dashrightarrow 00{:}22{:}09.676$ come in and infect students as well.

NOTE Confidence: 0.915225088596344

00:22:09.680 --> 00:22:11.936 We take a look at a number of

NOTE Confidence: 0.915225088596344

00:22:11.936 --> 00:22:12.990 different reproductive numbers,

NOTE Confidence: 0.915225088596344

 $00:22:12.990 \longrightarrow 00:22:15.114$ not just one which is the same thing as

NOTE Confidence: 0.915225088596344

 $00:22:15.114 \longrightarrow 00:22:17.929$ we can get a number of different age

NOTE Confidence: 0.915225088596344

 $00{:}22{:}17.929 \dashrightarrow 00{:}22{:}19.976$ dependent transmission curves, land of A.

NOTE Confidence: 0.915225088596344

 $00{:}22{:}19{.}976 \dashrightarrow 00{:}22{:}21{.}586$ And let's do a Sprint.

NOTE Confidence: 0.915225088596344

 $00{:}22{:}21.590 \dashrightarrow 00{:}22{:}23.590$ Let's ask what happens if we try and

NOTE Confidence: 0.915225088596344

 $00{:}22{:}23.590 \dashrightarrow 00{:}22{:}25.626$ pack the whole fall semester between

NOTE Confidence: 0.915225088596344

00:22:25.626 --> 00:22:27.476 September 1st and November 20th,

NOTE Confidence: 0.915225088596344

 $00:22:27.480 \longrightarrow 00:22:30.434$ which happens to be the Friday before

NOTE Confidence: 0.915225088596344

00:22:30.434 --> 00:22:31.934 Thanksgiving. What happens, OK?

NOTE Confidence: 0.915225088596344

 $00:22:31.934 \rightarrow 00:22:33.724$ Let's find out what happens,

NOTE Confidence: 0.915225088596344

00:22:33.730 --> 00:22:35.991 so I'm going to show you graphs

NOTE Confidence: 0.915225088596344

00:22:35.991 --> 00:22:37.816 of the cumulative incidence of

NOTE Confidence: 0.915225088596344

 $00{:}22{:}37.816 \dashrightarrow 00{:}22{:}40.186$ infection just for a few scenarios.

NOTE Confidence: 0.915225088596344

 $00{:}22{:}40{.}190 \dashrightarrow 00{:}22{:}43{.}430$ So you get an idea of how this works.

NOTE Confidence: 0.915225088596344

 $00{:}22{:}43{.}430 \dashrightarrow 00{:}22{:}45{.}812$ Let's start with a relatively low

NOTE Confidence: 0.915225088596344

 $00:22:45.812 \rightarrow 00:22:48.448$ reproductive number of only one and a half.

NOTE Confidence: 0.915225088596344

 $00:22:48.450 \rightarrow 00:22:50.598$ That would suggest that social distancing

NOTE Confidence: 0.915225088596344

 $00{:}22{:}50{.}598 \dashrightarrow 00{:}22{:}52{.}798$ procedures taken on the campus actually

NOTE Confidence: 0.915225088596344

 $00{:}22{:}52{.}798 \dashrightarrow 00{:}22{:}54{.}910$ are affective and its students are,

NOTE Confidence: 0.915225088596344

 $00:22:54.910 \longrightarrow 00:22:55.990$ by and large,

NOTE Confidence: 0.915225088596344

 $00:22:55.990 \longrightarrow 00:22:57.430$ going along with them,

NOTE Confidence: 0.915225088596344

 $00:22:57.430 \longrightarrow 00:22:59.220$ but on the other hand,

NOTE Confidence: 0.915225088596344

 $00:22:59.220 \longrightarrow 00:23:01.410$ we still will have imported infections

NOTE Confidence: 0.915225088596344

 $00:23:01.410 \longrightarrow 00:23:02.870$ coming from the outside.

NOTE Confidence: 0.915225088596344

 $00{:}23{:}02{.}870 \dashrightarrow 00{:}23{:}05{.}201$ And suppose that are coming in at

NOTE Confidence: 0.915225088596344

 $00:23:05.201 \rightarrow 00:23:07.210$ a rate of one per day,

NOTE Confidence: 0.915225088596344

 $00:23:07.210 \longrightarrow 00:23:09.874$ which means if we're looking at 80 days,

NOTE Confidence: 0.915225088596344

 $00:23:09.880 \longrightarrow 00:23:11.550$ there would be 80 infections

NOTE Confidence: 0.915225088596344

 $00{:}23{:}11{.}550 \dashrightarrow 00{:}23{:}13{.}220$ imported just because of people

NOTE Confidence: 0.915225088596344

 $00:23:13.279 \rightarrow 00:23:15.079$ going around town or visitors coming

NOTE Confidence: 0.915225088596344

 $00{:}23{:}15{.}079 \dashrightarrow 00{:}23{:}17{.}791$ to school here on the left axis is

NOTE Confidence: 0.915225088596344

 $00{:}23{:}17.791 \dashrightarrow 00{:}23{:}19.239$ the cumulative incidence infection.

- NOTE Confidence: 0.915225088596344
- 00:23:19.240 --> 00:23:20.910 If you took this situation,
- NOTE Confidence: 0.915225088596344
- $00{:}23{:}20{.}910 \dashrightarrow 00{:}23{:}22{.}674$ it did no testing what soever and
- NOTE Confidence: 0.915225088596344
- $00:23:22.674 \longrightarrow 00:23:24.356$ basically just let the outbreak
- NOTE Confidence: 0.915225088596344
- $00:23:24.356 \longrightarrow 00:23:25.248$ run unmitigated.
- NOTE Confidence: 0.915225088596344
- $00{:}23{:}25{.}250 \dashrightarrow 00{:}23{:}27{.}914$ Here is what happens on the right axis,
- NOTE Confidence: 0.915225088596344
- 00:23:27.920 --> 00:23:29.590 if indeed you do screening.
- NOTE Confidence: 0.915225088596344
- 00:23:29.590 --> 00:23:31.588 And if you disquieting biweekly every
- NOTE Confidence: 0.915225088596344
- 00:23:31.588 --> 00:23:34.010 other week, or if you do screening.
- NOTE Confidence: 0.915225088596344
- 00:23:34.010 > 00:23:35.390 Weekly and what happens?
- NOTE Confidence: 0.915225088596344
- $00:23:35.390 \longrightarrow 00:23:36.770$ What would happen here?
- NOTE Confidence: 0.915225088596344
- $00:23:36.770 \longrightarrow 00:23:39.562$ Is that over this run of 80 days
- NOTE Confidence: 0.915225088596344
- $00{:}23{:}39{.}562 \dashrightarrow 00{:}23{:}41{.}945$ you would end up with 20% of
- NOTE Confidence: 0.915225088596344
- $00{:}23{:}41{.}945 \dashrightarrow 00{:}23{:}43{.}670$ the students or the residents.
- NOTE Confidence: 0.915225088596344
- $00{:}23{:}43.670 \dashrightarrow 00{:}23{:}45.740$ I should say on campus students
- NOTE Confidence: 0.915225088596344
- $00:23:45.740 \longrightarrow 00:23:47.120$ and graduates to interpret.
- NOTE Confidence: 0.915225088596344

 $00:23:47.120 \longrightarrow 00:23:49.208$ Perhaps also some workers who are

NOTE Confidence: 0.915225088596344

 $00:23:49.208 \rightarrow 00:23:51.653$ resident and in any event you would

NOTE Confidence: 0.915225088596344

00:23:51.653 -> 00:23:53.330 have about 20% being infected.

NOTE Confidence: 0.915225088596344

 $00:23:53.330 \rightarrow 00:23:56.090$ But if you screen everybody biweekly in this,

NOTE Confidence: 0.915225088596344

 $00:23:56.090 \rightarrow 00:23:57.735$ see which situation following the

NOTE Confidence: 0.915225088596344

 $00{:}23{:}57{.}735 \dashrightarrow 00{:}23{:}59{.}890$ theory that I showed you earlier,

NOTE Confidence: 0.915225088596344

 $00:23:59.890 \rightarrow 00:24:02.298$ you're going to have about 3 1/2%

NOTE Confidence: 0.915225088596344

 $00:24:02.300 \longrightarrow 00:24:04.385$ look at the difference 20% for

NOTE Confidence: 0.915225088596344

 $00:24:04.385 \rightarrow 00:24:06.160 \ 3 \ 1/2\%$ from biweekly screening.

NOTE Confidence: 0.927866160869598

 $00:24:06.160 \longrightarrow 00:24:07.912$ Only one and 1/2% of the

NOTE Confidence: 0.927866160869598

 $00:24:07.912 \longrightarrow 00:24:09.560$ screen on a weekly basis.

NOTE Confidence: 0.927866160869598

 $00{:}24{:}09{.}560 \dashrightarrow 00{:}24{:}11{.}600$ This is an example of a scenario that

NOTE Confidence: 0.927866160869598

 $00:24:11.600 \rightarrow 00:24:13.889$ could be controlled by weekly screening.

NOTE Confidence: 0.927866160869598

 $00:24:13.890 \rightarrow 00:24:15.738$ Let's make the scenario more challenging.

NOTE Confidence: 0.927866160869598

 $00:24:15.740 \longrightarrow 00:24:17.966$ Suppose it turns out that the behavior

NOTE Confidence: 0.927866160869598

 $00{:}24{:}17.966 \dashrightarrow 00{:}24{:}20.627$ on campus is more or less like what was

- NOTE Confidence: 0.927866160869598
- $00{:}24{:}20.627 \dashrightarrow 00{:}24{:}22.849$ going on in Mujan at the beginning.
- NOTE Confidence: 0.927866160869598
- $00:24:22.850 \longrightarrow 00:24:24.410$ So we gotta reproductive number
- NOTE Confidence: 0.927866160869598
- 00:24:24.410 --> 00:24:26.558 more like 2.3 instead of 1.5. Well,
- NOTE Confidence: 0.927866160869598
- $00:24:26.558 \rightarrow 00:24:29.022$ now what happens if you don't do anything?
- NOTE Confidence: 0.927866160869598
- $00:24:29.030 \rightarrow 00:24:31.494$ And if you basically let this go unmitigated,
- NOTE Confidence: 0.927866160869598
- 00:24:31.500 --> 00:24:32.732 you're in real trouble,
- NOTE Confidence: 0.927866160869598
- 00:24:32.732 --> 00:24:34.900 because 80% or so will become infected.
- NOTE Confidence: 0.927866160869598
- 00:24:34.900 > 00:24:37.056 And, of course, that would never happen.
- NOTE Confidence: 0.927866160869598
- $00{:}24{:}37{.}060 \dashrightarrow 00{:}24{:}38{.}914$ I'm just showing you what the
- NOTE Confidence: 0.927866160869598
- $00:24:38.914 \rightarrow 00:24:40.150$ power of screening is.
- NOTE Confidence: 0.927866160869598
- 00:24:40.150 --> 00:24:42.106 Suppose you screw. In this situation,
- NOTE Confidence: 0.927866160869598
- 00:24:42.110 --> 00:24:43.988 once every other week biweekly screening,
- NOTE Confidence: 0.927866160869598
- $00:24:43.990 \longrightarrow 00:24:46.182$ you still end up with 12.5% of
- NOTE Confidence: 0.927866160869598
- $00{:}24{:}46.182 \dashrightarrow 00{:}24{:}47.430$ the students being infected.
- NOTE Confidence: 0.927866160869598
- $00:24:47.430 \longrightarrow 00:24:49.308$ By the way, as I say,
- NOTE Confidence: 0.927866160869598

 $00{:}24{:}49{.}310 \dashrightarrow 00{:}24{:}51{.}774$ These things just think what this implies

NOTE Confidence: 0.927866160869598

 $00:24:51.774 \rightarrow 00:24:53.690$ about isolation capacity that you would

NOTE Confidence: 0.927866160869598

 $00{:}24{:}53.690 \dashrightarrow 00{:}24{:}55.880$ need in order to put people getting sick.

NOTE Confidence: 0.927866160869598

 $00:24:55.880 \longrightarrow 00:24:57.580$ But weekly screening in this

NOTE Confidence: 0.927866160869598

 $00{:}24{:}57{.}580 \dashrightarrow 00{:}24{:}59{.}280$ scenario still is infecting less

NOTE Confidence: 0.927866160869598

 $00:24:59.337 \longrightarrow 00:25:01.202$ than 2 1/2% of the students overall.

NOTE Confidence: 0.927866160869598

00:25:01.202 --> 00:25:01.828 And finally,

NOTE Confidence: 0.927866160869598

 $00:25:01.830 \longrightarrow 00:25:03.395$ let's really try and challenge

NOTE Confidence: 0.927866160869598

 $00{:}25{:}03{.}395 \dashrightarrow 00{:}25{:}04{.}960$ us a little bit more.

NOTE Confidence: 0.927866160869598

 $00{:}25{:}04{.}960 \dashrightarrow 00{:}25{:}06{.}520$ Here's what reproductive number of

NOTE Confidence: 0.927866160869598

 $00{:}25{:}06{.}520 \dashrightarrow 00{:}25{:}09{.}055$ 3.3 this is closer to what we saw

NOTE Confidence: 0.927866160869598

 $00{:}25{:}09{.}055 \dashrightarrow 00{:}25{:}10{.}585$ in Connecticut at the beginning,

NOTE Confidence: 0.927866160869598

 $00:25:10.590 \rightarrow 00:25:12.540$ based on the initial rising hospitalization.

NOTE Confidence: 0.927866160869598

 $00{:}25{:}12.540 \dashrightarrow 00{:}25{:}13.970$ Or smiles have similarly rapid

NOTE Confidence: 0.927866160869598

 $00{:}25{:}13{.}970 \dashrightarrow 00{:}25{:}15{.}400$ increase at the very beginning.

NOTE Confidence: 0.927866160869598

 $00:25:15.400 \longrightarrow 00:25:17.110$ We're still keeping up by one

- NOTE Confidence: 0.927866160869598
- $00:25:17.110 \longrightarrow 00:25:17.965$ imported infection everyday.
- NOTE Confidence: 0.927866160869598
- 00:25:17.970 --> 00:25:19.979 Now, of course, if you didn't screen,
- NOTE Confidence: 0.927866160869598
- $00:25:19.980 \longrightarrow 00:25:21.732$ you would have a complete disaster
- NOTE Confidence: 0.927866160869598
- $00{:}25{:}21.732 \dashrightarrow 00{:}25{:}22.900$ because almost every one would
- NOTE Confidence: 0.927866160869598
- $00{:}25{:}22{.}946 \dashrightarrow 00{:}25{:}24{.}266$ be infected in this scenario.
- NOTE Confidence: 0.927866160869598
- $00{:}25{:}24{.}270 \dashrightarrow 00{:}25{:}26{.}550$ But again, we would not let that happen.
- NOTE Confidence: 0.927866160869598
- $00:25:26.550 \rightarrow 00:25:27.910$ On the other hand,
- NOTE Confidence: 0.927866160869598
- 00:25:27.910 > 00:25:29.950 look what happens if we scream.
- NOTE Confidence: 0.927866160869598
- $00{:}25{:}29{.}950 \dashrightarrow 00{:}25{:}31{.}600$ BI weekly screening doesn't really
- NOTE Confidence: 0.927866160869598
- $00:25:31.600 \rightarrow 00:25:32.590$ get you enough.
- NOTE Confidence: 0.927866160869598
- $00{:}25{:}32{.}590 \dashrightarrow 00{:}25{:}35{.}230$ It would tell you that you go from
- NOTE Confidence: 0.927866160869598
- $00:25:35.230 \longrightarrow 00:25:37.210$ like 100% to 46% or something,
- NOTE Confidence: 0.927866160869598
- $00:25:37.210 \longrightarrow 00:25:39.190$ so you cut it in half.
- NOTE Confidence: 0.927866160869598
- $00{:}25{:}39{.}190 \dashrightarrow 00{:}25{:}41{.}353$ But who would accept half of the
- NOTE Confidence: 0.927866160869598
- $00:25:41.353 \rightarrow 00:25:42.676$ students almost getting infected
- NOTE Confidence: 0.927866160869598

 $00:25:42.676 \rightarrow 00:25:44.668$ and yet weekly screening in this

NOTE Confidence: 0.927866160869598

00:25:44.668 --> 00:25:46.733 very same scenario gives you a

NOTE Confidence: 0.927866160869598

 $00:25:46.733 \longrightarrow 00:25:48.423$ cumulative incidence of four percent.

NOTE Confidence: 0.927866160869598

 $00{:}25{:}48{.}430 \dashrightarrow 00{:}25{:}50{.}740$ 4% of 10,000 is still a sizable

NOTE Confidence: 0.927866160869598

 $00:25:50.740 \longrightarrow 00:25:51.730$ number of students,

NOTE Confidence: 0.927866160869598

 $00{:}25{:}51{.}730 \dashrightarrow 00{:}25{:}53{.}710$ but it's not an uncontrollable number.

NOTE Confidence: 0.927866160869598

 $00:25:53.710 \longrightarrow 00:25:54.294$ So this,

NOTE Confidence: 0.927866160869598

 $00:25:54.294 \rightarrow 00:25:56.338$ this again is an example of what

NOTE Confidence: 0.927866160869598

 $00{:}25{:}56{.}338 \dashrightarrow 00{:}25{:}58{.}000$ happens with weekly screening.

NOTE Confidence: 0.927866160869598

 $00{:}25{:}58{.}000 \dashrightarrow 00{:}25{:}58{.}337$ Now.

NOTE Confidence: 0.927866160869598

 $00{:}25{:}58{.}337 \dashrightarrow 00{:}26{:}00{.}359$ It's possible that even weekly screening.

NOTE Confidence: 0.927866160869598

00:26:00.360 --> 00:26:02.290 Could be overrun and here, for example,

NOTE Confidence: 0.927866160869598

00:26:02.290 --> 00:26:04.450 just again to give you a sense of

NOTE Confidence: 0.927866160869598

 $00:26:04.511 \longrightarrow 00:26:06.450$ the kinds of analysis one can do.

NOTE Confidence: 0.927866160869598

 $00:26:06.450 \rightarrow 00:26:07.840$ We have no imported infections,

NOTE Confidence: 0.927866160869598

 $00:26:07.840 \longrightarrow 00:26:09.496$ one per week, one per day.

- NOTE Confidence: 0.927866160869598
- 00:26:09.500 --> 00:26:11.162 5 today we have our different
- NOTE Confidence: 0.927866160869598
- $00:26:11.162 \longrightarrow 00:26:11.716$ reproductive numbers.
- NOTE Confidence: 0.927866160869598
- $00:26:11.720 \rightarrow 00:26:12.952$ We have weekly screening.
- NOTE Confidence: 0.927866160869598
- $00{:}26{:}12.952 \dashrightarrow 00{:}26{:}14.800$ We have biweekly screening and here
- NOTE Confidence: 0.927866160869598
- $00{:}26{:}14.852 \dashrightarrow 00{:}26{:}16.756$ we see the numbers of infections that
- NOTE Confidence: 0.927866160869598
- 00:26:16.756 --> 00:26:18.640 would occur over the same 80 day run.
- NOTE Confidence: 0.927866160869598
- $00:26:18.640 \longrightarrow 00:26:20.355$ The first thing to do if you
- NOTE Confidence: 0.927866160869598
- 00:26:20.355 --> 00:26:22.247 want to compare by we've got the
- NOTE Confidence: 0.927866160869598
- $00{:}26{:}22{.}247 \dashrightarrow 00{:}26{:}23{.}612$ weekly screening is just look
- NOTE Confidence: 0.927866160869598
- $00:26:23.612 \longrightarrow 00:26:25.569$ at the difference in this scale.
- NOTE Confidence: 0.927866160869598
- $00:26:25.570 \longrightarrow 00:26:26.443$ We're talking thousands.
- NOTE Confidence: 0.927866160869598
- $00:26:26.443 \rightarrow 00:26:28.480$ Here were up at that level only
- NOTE Confidence: 0.927866160869598
- $00:26:28.541 \longrightarrow 00:26:29.999$ in the very very worst case.
- NOTE Confidence: 0.927866160869598
- $00{:}26{:}30{.}000 \dashrightarrow 00{:}26{:}30{.}656$ But this.
- NOTE Confidence: 0.927866160869598
- $00{:}26{:}30.656 \dashrightarrow 00{:}26{:}33.280$ This has a pretty important lesson to it,
- NOTE Confidence: 0.927866160869598

 $00:26:33.280 \longrightarrow 00:26:35.982$ which is if you're into the weekly

NOTE Confidence: 0.927866160869598

00:26:35.982 --> 00:26:38.328 screening world I hope I've convinced

NOTE Confidence: 0.927866160869598

 $00:26:38.328 \longrightarrow 00:26:40.925$ you that we should be there if

NOTE Confidence: 0.915978312492371

 $00:26:41.001 \rightarrow 00:26:43.593$ for it down in this region were OK.

NOTE Confidence: 0.915978312492371

 $00{:}26{:}43.600 \dashrightarrow 00{:}26{:}46.504$ Up here we have one imported infection for

NOTE Confidence: 0.915978312492371

 $00:26:46.504 \rightarrow 00:26:49.526$ day an we have a reproductive number of NOTE Confidence: 0.915978312492371

00:26:49.526 --> 00:26:52.789 say 2.26 which is doing well number well,

NOTE Confidence: 0.915978312492371

00:26:52.790 --> 00:26:56.302 you know we're still going to have 200

NOTE Confidence: 0.915978312492371

 $00{:}26{:}56{.}302 \dashrightarrow 00{:}26{:}59{.}298$ infected students at the end of the 80 days.

NOTE Confidence: 0.915978312492371

 $00:26:59.300 \longrightarrow 00:27:01.215$ Anything out here of course

NOTE Confidence: 0.915978312492371

 $00{:}27{:}01.215 \dashrightarrow 00{:}27{:}02.747$ these are disastrous scenarios.

NOTE Confidence: 0.915978312492371

 $00{:}27{:}02{.}750 \dashrightarrow 00{:}27{:}05{.}048$ So weekly screening isn't the panacea.

NOTE Confidence: 0.915978312492371

 $00{:}27{:}05{.}050 \dashrightarrow 00{:}27{:}06{.}386$ It doesn't always work.

NOTE Confidence: 0.915978312492371

 $00{:}27{:}06{.}386 \dashrightarrow 00{:}27{:}08{.}390$ It really depends on what the

NOTE Confidence: 0.915978312492371

 $00{:}27{:}08{.}455 \dashrightarrow 00{:}27{:}10{.}407$ underlying parameters are here,

NOTE Confidence: 0.915978312492371

 $00:27:10.410 \rightarrow 00:27:13.857$ which suggests to me that if you're going to.

- NOTE Confidence: 0.915978312492371
- $00{:}27{:}13.860 \dashrightarrow 00{:}27{:}15.995$ Rely on a screening program to get
- NOTE Confidence: 0.915978312492371
- $00{:}27{:}15.995 \dashrightarrow 00{:}27{:}18.250$ you through a residential program.
- NOTE Confidence: 0.915978312492371
- $00:27:18.250 \longrightarrow 00:27:20.871$ You have got to be very, very,
- NOTE Confidence: 0.915978312492371
- $00{:}27{:}20.871 \dashrightarrow 00{:}27{:}22.976$ very confident that your epidemiological
- NOTE Confidence: 0.915978312492371
- $00{:}27{:}22{.}976 \dashrightarrow 00{:}27{:}25{.}321$ scenario really is gonna land you
- NOTE Confidence: 0.915978312492371
- $00{:}27{:}25{.}321 \dashrightarrow 00{:}27{:}27{.}400$ in this part of the parameter space.
- NOTE Confidence: 0.915978312492371
- 00:27:27.400 --> 00:27:29.596 'cause if you move over here,
- NOTE Confidence: 0.915978312492371
- $00:27:29.600 \rightarrow 00:27:31.790$ it becomes lights out pretty fast.
- NOTE Confidence: 0.915978312492371
- $00:27:31.790 \longrightarrow 00:27:33.005$ So to summarize,
- NOTE Confidence: 0.915978312492371
- 00:27:33.005 --> 00:27:35.030 modeling can help understand transmission
- NOTE Confidence: 0.915978312492371
- $00:27:35.030 \rightarrow 00:27:37.420$ dynamics that has a lot of applicability
- NOTE Confidence: 0.915978312492371
- $00{:}27{:}37{.}420 \dashrightarrow 00{:}27{:}39{.}751$ and I hope I've illustrated that with
- NOTE Confidence: 0.915978312492371
- $00{:}27{:}39{.}751 \dashrightarrow 00{:}27{:}42{.}013$ the sludge data modeling can help
- NOTE Confidence: 0.915978312492371
- $00{:}27{:}42.013$ --> $00{:}27{:}43.145$ understand intervention proposals.
- NOTE Confidence: 0.915978312492371
- $00:27:43.145 \rightarrow 00:27:45.770$ I've gone into detail on repeat screening.
- NOTE Confidence: 0.915978312492371

 $00:27:45.770 \longrightarrow 00:27:47.834$ But of course there are many

NOTE Confidence: 0.915978312492371

 $00{:}27{:}47{.}834 \dashrightarrow 00{:}27{:}49{.}210$ other interventions that one

NOTE Confidence: 0.915978312492371

 $00:27:49.271 \longrightarrow 00:27:50.837$ can study in the same way.

NOTE Confidence: 0.915978312492371

 $00:27:50.840 \longrightarrow 00:27:52.108$ Epidemic modeling in general

NOTE Confidence: 0.915978312492371

 $00:27:52.108 \longrightarrow 00:27:53.693$ is not about curve fitting.

NOTE Confidence: 0.915978312492371

 $00{:}27{:}53.700 \dashrightarrow 00{:}27{:}55.596$ It is not like election polling.

NOTE Confidence: 0.915978312492371

 $00{:}27{:}55{.}600 \dashrightarrow 00{:}27{:}58{.}471$ It's not like trying to make a guess and

NOTE Confidence: 0.915978312492371

 $00:27:58.471 \rightarrow 00:28:01.618$ see if you kind of hit the hit the target.

NOTE Confidence: 0.915978312492371

00:28:01.620 --> 00:28:01.946 Rather,

NOTE Confidence: 0.915978312492371

 $00:28:01.946 \longrightarrow 00:28:03.902$ it's more like trying to navigate

NOTE Confidence: 0.915978312492371

 $00:28:03.902 \longrightarrow 00:28:05.419$ a car through the fog.

NOTE Confidence: 0.915978312492371

 $00:28:05.420 \rightarrow 00:28:07.010$ Want to understand transmission dynamics?

NOTE Confidence: 0.915978312492371

 $00{:}28{:}07{.}010 \dashrightarrow 00{:}28{:}08{.}858$ And you want to use that understanding

NOTE Confidence: 0.915978312492371

 $00{:}28{:}08{.}858 \dashrightarrow 00{:}28{:}10{.}491$ to assess alternative decisions or

NOTE Confidence: 0.915978312492371

 $00:28:10.491 \rightarrow 00:28:12.075$ interventions to support decision-making?

NOTE Confidence: 0.915978312492371

 $00:28:12.080 \longrightarrow 00:28:13.344$ And that's my story,

NOTE Confidence: 0.915978312492371

 $00{:}28{:}13{.}344 \dashrightarrow 00{:}28{:}14{.}924$ and I'm sticking with it.

NOTE Confidence: 0.915978312492371

00:28:14.930 --> 00:28:16.198 Thank you very much.

NOTE Confidence: 0.980173289775848

00:28:18.770 --> 00:28:20.126 Thank you very much.